Description: The gaussian integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | gzsubrg | |- Z[i] e. ( SubRing ` CCfld ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gzcn | |- ( x e. Z[i] -> x e. CC ) |
|
2 | gzaddcl | |- ( ( x e. Z[i] /\ y e. Z[i] ) -> ( x + y ) e. Z[i] ) |
|
3 | gznegcl | |- ( x e. Z[i] -> -u x e. Z[i] ) |
|
4 | 1z | |- 1 e. ZZ |
|
5 | zgz | |- ( 1 e. ZZ -> 1 e. Z[i] ) |
|
6 | 4 5 | ax-mp | |- 1 e. Z[i] |
7 | gzmulcl | |- ( ( x e. Z[i] /\ y e. Z[i] ) -> ( x x. y ) e. Z[i] ) |
|
8 | 1 2 3 6 7 | cnsubrglem | |- Z[i] e. ( SubRing ` CCfld ) |