| Step |
Hyp |
Ref |
Expression |
| 1 |
|
snssi |
|- ( A e. ~H -> { A } C_ ~H ) |
| 2 |
|
occl |
|- ( { A } C_ ~H -> ( _|_ ` { A } ) e. CH ) |
| 3 |
|
choccl |
|- ( ( _|_ ` { A } ) e. CH -> ( _|_ ` ( _|_ ` { A } ) ) e. CH ) |
| 4 |
1 2 3
|
3syl |
|- ( A e. ~H -> ( _|_ ` ( _|_ ` { A } ) ) e. CH ) |
| 5 |
4
|
adantr |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( _|_ ` ( _|_ ` { A } ) ) e. CH ) |
| 6 |
|
h1dn0 |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( _|_ ` ( _|_ ` { A } ) ) =/= 0H ) |
| 7 |
|
h1datom |
|- ( ( x e. CH /\ A e. ~H ) -> ( x C_ ( _|_ ` ( _|_ ` { A } ) ) -> ( x = ( _|_ ` ( _|_ ` { A } ) ) \/ x = 0H ) ) ) |
| 8 |
7
|
expcom |
|- ( A e. ~H -> ( x e. CH -> ( x C_ ( _|_ ` ( _|_ ` { A } ) ) -> ( x = ( _|_ ` ( _|_ ` { A } ) ) \/ x = 0H ) ) ) ) |
| 9 |
8
|
ralrimiv |
|- ( A e. ~H -> A. x e. CH ( x C_ ( _|_ ` ( _|_ ` { A } ) ) -> ( x = ( _|_ ` ( _|_ ` { A } ) ) \/ x = 0H ) ) ) |
| 10 |
9
|
adantr |
|- ( ( A e. ~H /\ A =/= 0h ) -> A. x e. CH ( x C_ ( _|_ ` ( _|_ ` { A } ) ) -> ( x = ( _|_ ` ( _|_ ` { A } ) ) \/ x = 0H ) ) ) |
| 11 |
6 10
|
jca |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( _|_ ` ( _|_ ` { A } ) ) =/= 0H /\ A. x e. CH ( x C_ ( _|_ ` ( _|_ ` { A } ) ) -> ( x = ( _|_ ` ( _|_ ` { A } ) ) \/ x = 0H ) ) ) ) |
| 12 |
|
elat2 |
|- ( ( _|_ ` ( _|_ ` { A } ) ) e. HAtoms <-> ( ( _|_ ` ( _|_ ` { A } ) ) e. CH /\ ( ( _|_ ` ( _|_ ` { A } ) ) =/= 0H /\ A. x e. CH ( x C_ ( _|_ ` ( _|_ ` { A } ) ) -> ( x = ( _|_ ` ( _|_ ` { A } ) ) \/ x = 0H ) ) ) ) ) |
| 13 |
5 11 12
|
sylanbrc |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( _|_ ` ( _|_ ` { A } ) ) e. HAtoms ) |