| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							h1datom.1 | 
							 |-  A e. CH  | 
						
						
							| 2 | 
							
								
							 | 
							h1datom.2 | 
							 |-  B e. ~H  | 
						
						
							| 3 | 
							
								1
							 | 
							chne0i | 
							 |-  ( A =/= 0H <-> E. x e. A x =/= 0h )  | 
						
						
							| 4 | 
							
								
							 | 
							ssel | 
							 |-  ( A C_ ( _|_ ` ( _|_ ` { B } ) ) -> ( x e. A -> x e. ( _|_ ` ( _|_ ` { B } ) ) ) ) | 
						
						
							| 5 | 
							
								2
							 | 
							h1de2ci | 
							 |-  ( x e. ( _|_ ` ( _|_ ` { B } ) ) <-> E. y e. CC x = ( y .h B ) ) | 
						
						
							| 6 | 
							
								
							 | 
							oveq1 | 
							 |-  ( y = 0 -> ( y .h B ) = ( 0 .h B ) )  | 
						
						
							| 7 | 
							
								
							 | 
							ax-hvmul0 | 
							 |-  ( B e. ~H -> ( 0 .h B ) = 0h )  | 
						
						
							| 8 | 
							
								2 7
							 | 
							ax-mp | 
							 |-  ( 0 .h B ) = 0h  | 
						
						
							| 9 | 
							
								6 8
							 | 
							eqtrdi | 
							 |-  ( y = 0 -> ( y .h B ) = 0h )  | 
						
						
							| 10 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( x = ( y .h B ) -> ( x = 0h <-> ( y .h B ) = 0h ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							imbitrrid | 
							 |-  ( x = ( y .h B ) -> ( y = 0 -> x = 0h ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							necon3d | 
							 |-  ( x = ( y .h B ) -> ( x =/= 0h -> y =/= 0 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantl | 
							 |-  ( ( y e. CC /\ x = ( y .h B ) ) -> ( x =/= 0h -> y =/= 0 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							reccl | 
							 |-  ( ( y e. CC /\ y =/= 0 ) -> ( 1 / y ) e. CC )  | 
						
						
							| 15 | 
							
								1
							 | 
							chshii | 
							 |-  A e. SH  | 
						
						
							| 16 | 
							
								
							 | 
							shmulcl | 
							 |-  ( ( A e. SH /\ ( 1 / y ) e. CC /\ x e. A ) -> ( ( 1 / y ) .h x ) e. A )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							mp3an1 | 
							 |-  ( ( ( 1 / y ) e. CC /\ x e. A ) -> ( ( 1 / y ) .h x ) e. A )  | 
						
						
							| 18 | 
							
								17
							 | 
							ex | 
							 |-  ( ( 1 / y ) e. CC -> ( x e. A -> ( ( 1 / y ) .h x ) e. A ) )  | 
						
						
							| 19 | 
							
								14 18
							 | 
							syl | 
							 |-  ( ( y e. CC /\ y =/= 0 ) -> ( x e. A -> ( ( 1 / y ) .h x ) e. A ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							adantr | 
							 |-  ( ( ( y e. CC /\ y =/= 0 ) /\ x = ( y .h B ) ) -> ( x e. A -> ( ( 1 / y ) .h x ) e. A ) )  | 
						
						
							| 21 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = ( y .h B ) -> ( ( 1 / y ) .h x ) = ( ( 1 / y ) .h ( y .h B ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simpl | 
							 |-  ( ( y e. CC /\ y =/= 0 ) -> y e. CC )  | 
						
						
							| 23 | 
							
								
							 | 
							ax-hvmulass | 
							 |-  ( ( ( 1 / y ) e. CC /\ y e. CC /\ B e. ~H ) -> ( ( ( 1 / y ) x. y ) .h B ) = ( ( 1 / y ) .h ( y .h B ) ) )  | 
						
						
							| 24 | 
							
								2 23
							 | 
							mp3an3 | 
							 |-  ( ( ( 1 / y ) e. CC /\ y e. CC ) -> ( ( ( 1 / y ) x. y ) .h B ) = ( ( 1 / y ) .h ( y .h B ) ) )  | 
						
						
							| 25 | 
							
								14 22 24
							 | 
							syl2anc | 
							 |-  ( ( y e. CC /\ y =/= 0 ) -> ( ( ( 1 / y ) x. y ) .h B ) = ( ( 1 / y ) .h ( y .h B ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							recid2 | 
							 |-  ( ( y e. CC /\ y =/= 0 ) -> ( ( 1 / y ) x. y ) = 1 )  | 
						
						
							| 27 | 
							
								26
							 | 
							oveq1d | 
							 |-  ( ( y e. CC /\ y =/= 0 ) -> ( ( ( 1 / y ) x. y ) .h B ) = ( 1 .h B ) )  | 
						
						
							| 28 | 
							
								25 27
							 | 
							eqtr3d | 
							 |-  ( ( y e. CC /\ y =/= 0 ) -> ( ( 1 / y ) .h ( y .h B ) ) = ( 1 .h B ) )  | 
						
						
							| 29 | 
							
								
							 | 
							ax-hvmulid | 
							 |-  ( B e. ~H -> ( 1 .h B ) = B )  | 
						
						
							| 30 | 
							
								2 29
							 | 
							ax-mp | 
							 |-  ( 1 .h B ) = B  | 
						
						
							| 31 | 
							
								28 30
							 | 
							eqtrdi | 
							 |-  ( ( y e. CC /\ y =/= 0 ) -> ( ( 1 / y ) .h ( y .h B ) ) = B )  | 
						
						
							| 32 | 
							
								21 31
							 | 
							sylan9eqr | 
							 |-  ( ( ( y e. CC /\ y =/= 0 ) /\ x = ( y .h B ) ) -> ( ( 1 / y ) .h x ) = B )  | 
						
						
							| 33 | 
							
								32
							 | 
							eleq1d | 
							 |-  ( ( ( y e. CC /\ y =/= 0 ) /\ x = ( y .h B ) ) -> ( ( ( 1 / y ) .h x ) e. A <-> B e. A ) )  | 
						
						
							| 34 | 
							
								20 33
							 | 
							sylibd | 
							 |-  ( ( ( y e. CC /\ y =/= 0 ) /\ x = ( y .h B ) ) -> ( x e. A -> B e. A ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							exp31 | 
							 |-  ( y e. CC -> ( y =/= 0 -> ( x = ( y .h B ) -> ( x e. A -> B e. A ) ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							com23 | 
							 |-  ( y e. CC -> ( x = ( y .h B ) -> ( y =/= 0 -> ( x e. A -> B e. A ) ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							imp | 
							 |-  ( ( y e. CC /\ x = ( y .h B ) ) -> ( y =/= 0 -> ( x e. A -> B e. A ) ) )  | 
						
						
							| 38 | 
							
								13 37
							 | 
							syld | 
							 |-  ( ( y e. CC /\ x = ( y .h B ) ) -> ( x =/= 0h -> ( x e. A -> B e. A ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							com3r | 
							 |-  ( x e. A -> ( ( y e. CC /\ x = ( y .h B ) ) -> ( x =/= 0h -> B e. A ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							expd | 
							 |-  ( x e. A -> ( y e. CC -> ( x = ( y .h B ) -> ( x =/= 0h -> B e. A ) ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							rexlimdv | 
							 |-  ( x e. A -> ( E. y e. CC x = ( y .h B ) -> ( x =/= 0h -> B e. A ) ) )  | 
						
						
							| 42 | 
							
								5 41
							 | 
							biimtrid | 
							 |-  ( x e. A -> ( x e. ( _|_ ` ( _|_ ` { B } ) ) -> ( x =/= 0h -> B e. A ) ) ) | 
						
						
							| 43 | 
							
								4 42
							 | 
							sylcom | 
							 |-  ( A C_ ( _|_ ` ( _|_ ` { B } ) ) -> ( x e. A -> ( x =/= 0h -> B e. A ) ) ) | 
						
						
							| 44 | 
							
								43
							 | 
							rexlimdv | 
							 |-  ( A C_ ( _|_ ` ( _|_ ` { B } ) ) -> ( E. x e. A x =/= 0h -> B e. A ) ) | 
						
						
							| 45 | 
							
								3 44
							 | 
							biimtrid | 
							 |-  ( A C_ ( _|_ ` ( _|_ ` { B } ) ) -> ( A =/= 0H -> B e. A ) ) | 
						
						
							| 46 | 
							
								
							 | 
							snssi | 
							 |-  ( B e. A -> { B } C_ A ) | 
						
						
							| 47 | 
							
								
							 | 
							snssi | 
							 |-  ( B e. ~H -> { B } C_ ~H ) | 
						
						
							| 48 | 
							
								2 47
							 | 
							ax-mp | 
							 |-  { B } C_ ~H | 
						
						
							| 49 | 
							
								1
							 | 
							chssii | 
							 |-  A C_ ~H  | 
						
						
							| 50 | 
							
								48 49
							 | 
							occon2i | 
							 |-  ( { B } C_ A -> ( _|_ ` ( _|_ ` { B } ) ) C_ ( _|_ ` ( _|_ ` A ) ) ) | 
						
						
							| 51 | 
							
								46 50
							 | 
							syl | 
							 |-  ( B e. A -> ( _|_ ` ( _|_ ` { B } ) ) C_ ( _|_ ` ( _|_ ` A ) ) ) | 
						
						
							| 52 | 
							
								1
							 | 
							ococi | 
							 |-  ( _|_ ` ( _|_ ` A ) ) = A  | 
						
						
							| 53 | 
							
								51 52
							 | 
							sseqtrdi | 
							 |-  ( B e. A -> ( _|_ ` ( _|_ ` { B } ) ) C_ A ) | 
						
						
							| 54 | 
							
								45 53
							 | 
							syl6 | 
							 |-  ( A C_ ( _|_ ` ( _|_ ` { B } ) ) -> ( A =/= 0H -> ( _|_ ` ( _|_ ` { B } ) ) C_ A ) ) | 
						
						
							| 55 | 
							
								54
							 | 
							anc2li | 
							 |-  ( A C_ ( _|_ ` ( _|_ ` { B } ) ) -> ( A =/= 0H -> ( A C_ ( _|_ ` ( _|_ ` { B } ) ) /\ ( _|_ ` ( _|_ ` { B } ) ) C_ A ) ) ) | 
						
						
							| 56 | 
							
								
							 | 
							eqss | 
							 |-  ( A = ( _|_ ` ( _|_ ` { B } ) ) <-> ( A C_ ( _|_ ` ( _|_ ` { B } ) ) /\ ( _|_ ` ( _|_ ` { B } ) ) C_ A ) ) | 
						
						
							| 57 | 
							
								55 56
							 | 
							imbitrrdi | 
							 |-  ( A C_ ( _|_ ` ( _|_ ` { B } ) ) -> ( A =/= 0H -> A = ( _|_ ` ( _|_ ` { B } ) ) ) ) | 
						
						
							| 58 | 
							
								57
							 | 
							necon1d | 
							 |-  ( A C_ ( _|_ ` ( _|_ ` { B } ) ) -> ( A =/= ( _|_ ` ( _|_ ` { B } ) ) -> A = 0H ) ) | 
						
						
							| 59 | 
							
								
							 | 
							neor | 
							 |-  ( ( A = ( _|_ ` ( _|_ ` { B } ) ) \/ A = 0H ) <-> ( A =/= ( _|_ ` ( _|_ ` { B } ) ) -> A = 0H ) ) | 
						
						
							| 60 | 
							
								58 59
							 | 
							sylibr | 
							 |-  ( A C_ ( _|_ ` ( _|_ ` { B } ) ) -> ( A = ( _|_ ` ( _|_ ` { B } ) ) \/ A = 0H ) ) |