| Step |
Hyp |
Ref |
Expression |
| 1 |
|
h1datom.1 |
|- A e. CH |
| 2 |
|
h1datom.2 |
|- B e. ~H |
| 3 |
1
|
chne0i |
|- ( A =/= 0H <-> E. x e. A x =/= 0h ) |
| 4 |
|
ssel |
|- ( A C_ ( _|_ ` ( _|_ ` { B } ) ) -> ( x e. A -> x e. ( _|_ ` ( _|_ ` { B } ) ) ) ) |
| 5 |
2
|
h1de2ci |
|- ( x e. ( _|_ ` ( _|_ ` { B } ) ) <-> E. y e. CC x = ( y .h B ) ) |
| 6 |
|
oveq1 |
|- ( y = 0 -> ( y .h B ) = ( 0 .h B ) ) |
| 7 |
|
ax-hvmul0 |
|- ( B e. ~H -> ( 0 .h B ) = 0h ) |
| 8 |
2 7
|
ax-mp |
|- ( 0 .h B ) = 0h |
| 9 |
6 8
|
eqtrdi |
|- ( y = 0 -> ( y .h B ) = 0h ) |
| 10 |
|
eqeq1 |
|- ( x = ( y .h B ) -> ( x = 0h <-> ( y .h B ) = 0h ) ) |
| 11 |
9 10
|
imbitrrid |
|- ( x = ( y .h B ) -> ( y = 0 -> x = 0h ) ) |
| 12 |
11
|
necon3d |
|- ( x = ( y .h B ) -> ( x =/= 0h -> y =/= 0 ) ) |
| 13 |
12
|
adantl |
|- ( ( y e. CC /\ x = ( y .h B ) ) -> ( x =/= 0h -> y =/= 0 ) ) |
| 14 |
|
reccl |
|- ( ( y e. CC /\ y =/= 0 ) -> ( 1 / y ) e. CC ) |
| 15 |
1
|
chshii |
|- A e. SH |
| 16 |
|
shmulcl |
|- ( ( A e. SH /\ ( 1 / y ) e. CC /\ x e. A ) -> ( ( 1 / y ) .h x ) e. A ) |
| 17 |
15 16
|
mp3an1 |
|- ( ( ( 1 / y ) e. CC /\ x e. A ) -> ( ( 1 / y ) .h x ) e. A ) |
| 18 |
17
|
ex |
|- ( ( 1 / y ) e. CC -> ( x e. A -> ( ( 1 / y ) .h x ) e. A ) ) |
| 19 |
14 18
|
syl |
|- ( ( y e. CC /\ y =/= 0 ) -> ( x e. A -> ( ( 1 / y ) .h x ) e. A ) ) |
| 20 |
19
|
adantr |
|- ( ( ( y e. CC /\ y =/= 0 ) /\ x = ( y .h B ) ) -> ( x e. A -> ( ( 1 / y ) .h x ) e. A ) ) |
| 21 |
|
oveq2 |
|- ( x = ( y .h B ) -> ( ( 1 / y ) .h x ) = ( ( 1 / y ) .h ( y .h B ) ) ) |
| 22 |
|
simpl |
|- ( ( y e. CC /\ y =/= 0 ) -> y e. CC ) |
| 23 |
|
ax-hvmulass |
|- ( ( ( 1 / y ) e. CC /\ y e. CC /\ B e. ~H ) -> ( ( ( 1 / y ) x. y ) .h B ) = ( ( 1 / y ) .h ( y .h B ) ) ) |
| 24 |
2 23
|
mp3an3 |
|- ( ( ( 1 / y ) e. CC /\ y e. CC ) -> ( ( ( 1 / y ) x. y ) .h B ) = ( ( 1 / y ) .h ( y .h B ) ) ) |
| 25 |
14 22 24
|
syl2anc |
|- ( ( y e. CC /\ y =/= 0 ) -> ( ( ( 1 / y ) x. y ) .h B ) = ( ( 1 / y ) .h ( y .h B ) ) ) |
| 26 |
|
recid2 |
|- ( ( y e. CC /\ y =/= 0 ) -> ( ( 1 / y ) x. y ) = 1 ) |
| 27 |
26
|
oveq1d |
|- ( ( y e. CC /\ y =/= 0 ) -> ( ( ( 1 / y ) x. y ) .h B ) = ( 1 .h B ) ) |
| 28 |
25 27
|
eqtr3d |
|- ( ( y e. CC /\ y =/= 0 ) -> ( ( 1 / y ) .h ( y .h B ) ) = ( 1 .h B ) ) |
| 29 |
|
ax-hvmulid |
|- ( B e. ~H -> ( 1 .h B ) = B ) |
| 30 |
2 29
|
ax-mp |
|- ( 1 .h B ) = B |
| 31 |
28 30
|
eqtrdi |
|- ( ( y e. CC /\ y =/= 0 ) -> ( ( 1 / y ) .h ( y .h B ) ) = B ) |
| 32 |
21 31
|
sylan9eqr |
|- ( ( ( y e. CC /\ y =/= 0 ) /\ x = ( y .h B ) ) -> ( ( 1 / y ) .h x ) = B ) |
| 33 |
32
|
eleq1d |
|- ( ( ( y e. CC /\ y =/= 0 ) /\ x = ( y .h B ) ) -> ( ( ( 1 / y ) .h x ) e. A <-> B e. A ) ) |
| 34 |
20 33
|
sylibd |
|- ( ( ( y e. CC /\ y =/= 0 ) /\ x = ( y .h B ) ) -> ( x e. A -> B e. A ) ) |
| 35 |
34
|
exp31 |
|- ( y e. CC -> ( y =/= 0 -> ( x = ( y .h B ) -> ( x e. A -> B e. A ) ) ) ) |
| 36 |
35
|
com23 |
|- ( y e. CC -> ( x = ( y .h B ) -> ( y =/= 0 -> ( x e. A -> B e. A ) ) ) ) |
| 37 |
36
|
imp |
|- ( ( y e. CC /\ x = ( y .h B ) ) -> ( y =/= 0 -> ( x e. A -> B e. A ) ) ) |
| 38 |
13 37
|
syld |
|- ( ( y e. CC /\ x = ( y .h B ) ) -> ( x =/= 0h -> ( x e. A -> B e. A ) ) ) |
| 39 |
38
|
com3r |
|- ( x e. A -> ( ( y e. CC /\ x = ( y .h B ) ) -> ( x =/= 0h -> B e. A ) ) ) |
| 40 |
39
|
expd |
|- ( x e. A -> ( y e. CC -> ( x = ( y .h B ) -> ( x =/= 0h -> B e. A ) ) ) ) |
| 41 |
40
|
rexlimdv |
|- ( x e. A -> ( E. y e. CC x = ( y .h B ) -> ( x =/= 0h -> B e. A ) ) ) |
| 42 |
5 41
|
biimtrid |
|- ( x e. A -> ( x e. ( _|_ ` ( _|_ ` { B } ) ) -> ( x =/= 0h -> B e. A ) ) ) |
| 43 |
4 42
|
sylcom |
|- ( A C_ ( _|_ ` ( _|_ ` { B } ) ) -> ( x e. A -> ( x =/= 0h -> B e. A ) ) ) |
| 44 |
43
|
rexlimdv |
|- ( A C_ ( _|_ ` ( _|_ ` { B } ) ) -> ( E. x e. A x =/= 0h -> B e. A ) ) |
| 45 |
3 44
|
biimtrid |
|- ( A C_ ( _|_ ` ( _|_ ` { B } ) ) -> ( A =/= 0H -> B e. A ) ) |
| 46 |
|
snssi |
|- ( B e. A -> { B } C_ A ) |
| 47 |
|
snssi |
|- ( B e. ~H -> { B } C_ ~H ) |
| 48 |
2 47
|
ax-mp |
|- { B } C_ ~H |
| 49 |
1
|
chssii |
|- A C_ ~H |
| 50 |
48 49
|
occon2i |
|- ( { B } C_ A -> ( _|_ ` ( _|_ ` { B } ) ) C_ ( _|_ ` ( _|_ ` A ) ) ) |
| 51 |
46 50
|
syl |
|- ( B e. A -> ( _|_ ` ( _|_ ` { B } ) ) C_ ( _|_ ` ( _|_ ` A ) ) ) |
| 52 |
1
|
ococi |
|- ( _|_ ` ( _|_ ` A ) ) = A |
| 53 |
51 52
|
sseqtrdi |
|- ( B e. A -> ( _|_ ` ( _|_ ` { B } ) ) C_ A ) |
| 54 |
45 53
|
syl6 |
|- ( A C_ ( _|_ ` ( _|_ ` { B } ) ) -> ( A =/= 0H -> ( _|_ ` ( _|_ ` { B } ) ) C_ A ) ) |
| 55 |
54
|
anc2li |
|- ( A C_ ( _|_ ` ( _|_ ` { B } ) ) -> ( A =/= 0H -> ( A C_ ( _|_ ` ( _|_ ` { B } ) ) /\ ( _|_ ` ( _|_ ` { B } ) ) C_ A ) ) ) |
| 56 |
|
eqss |
|- ( A = ( _|_ ` ( _|_ ` { B } ) ) <-> ( A C_ ( _|_ ` ( _|_ ` { B } ) ) /\ ( _|_ ` ( _|_ ` { B } ) ) C_ A ) ) |
| 57 |
55 56
|
imbitrrdi |
|- ( A C_ ( _|_ ` ( _|_ ` { B } ) ) -> ( A =/= 0H -> A = ( _|_ ` ( _|_ ` { B } ) ) ) ) |
| 58 |
57
|
necon1d |
|- ( A C_ ( _|_ ` ( _|_ ` { B } ) ) -> ( A =/= ( _|_ ` ( _|_ ` { B } ) ) -> A = 0H ) ) |
| 59 |
|
neor |
|- ( ( A = ( _|_ ` ( _|_ ` { B } ) ) \/ A = 0H ) <-> ( A =/= ( _|_ ` ( _|_ ` { B } ) ) -> A = 0H ) ) |
| 60 |
58 59
|
sylibr |
|- ( A C_ ( _|_ ` ( _|_ ` { B } ) ) -> ( A = ( _|_ ` ( _|_ ` { B } ) ) \/ A = 0H ) ) |