Step |
Hyp |
Ref |
Expression |
1 |
|
h1de2.1 |
|- A e. ~H |
2 |
|
h1de2.2 |
|- B e. ~H |
3 |
|
his6 |
|- ( B e. ~H -> ( ( B .ih B ) = 0 <-> B = 0h ) ) |
4 |
2 3
|
ax-mp |
|- ( ( B .ih B ) = 0 <-> B = 0h ) |
5 |
4
|
necon3bii |
|- ( ( B .ih B ) =/= 0 <-> B =/= 0h ) |
6 |
1 2
|
h1de2i |
|- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( B .ih B ) .h A ) = ( ( A .ih B ) .h B ) ) |
7 |
6
|
adantl |
|- ( ( ( B .ih B ) =/= 0 /\ A e. ( _|_ ` ( _|_ ` { B } ) ) ) -> ( ( B .ih B ) .h A ) = ( ( A .ih B ) .h B ) ) |
8 |
7
|
oveq2d |
|- ( ( ( B .ih B ) =/= 0 /\ A e. ( _|_ ` ( _|_ ` { B } ) ) ) -> ( ( 1 / ( B .ih B ) ) .h ( ( B .ih B ) .h A ) ) = ( ( 1 / ( B .ih B ) ) .h ( ( A .ih B ) .h B ) ) ) |
9 |
2 2
|
hicli |
|- ( B .ih B ) e. CC |
10 |
9
|
recclzi |
|- ( ( B .ih B ) =/= 0 -> ( 1 / ( B .ih B ) ) e. CC ) |
11 |
|
ax-hvmulass |
|- ( ( ( 1 / ( B .ih B ) ) e. CC /\ ( B .ih B ) e. CC /\ A e. ~H ) -> ( ( ( 1 / ( B .ih B ) ) x. ( B .ih B ) ) .h A ) = ( ( 1 / ( B .ih B ) ) .h ( ( B .ih B ) .h A ) ) ) |
12 |
9 1 11
|
mp3an23 |
|- ( ( 1 / ( B .ih B ) ) e. CC -> ( ( ( 1 / ( B .ih B ) ) x. ( B .ih B ) ) .h A ) = ( ( 1 / ( B .ih B ) ) .h ( ( B .ih B ) .h A ) ) ) |
13 |
10 12
|
syl |
|- ( ( B .ih B ) =/= 0 -> ( ( ( 1 / ( B .ih B ) ) x. ( B .ih B ) ) .h A ) = ( ( 1 / ( B .ih B ) ) .h ( ( B .ih B ) .h A ) ) ) |
14 |
|
ax-1cn |
|- 1 e. CC |
15 |
14 9
|
divcan1zi |
|- ( ( B .ih B ) =/= 0 -> ( ( 1 / ( B .ih B ) ) x. ( B .ih B ) ) = 1 ) |
16 |
15
|
oveq1d |
|- ( ( B .ih B ) =/= 0 -> ( ( ( 1 / ( B .ih B ) ) x. ( B .ih B ) ) .h A ) = ( 1 .h A ) ) |
17 |
13 16
|
eqtr3d |
|- ( ( B .ih B ) =/= 0 -> ( ( 1 / ( B .ih B ) ) .h ( ( B .ih B ) .h A ) ) = ( 1 .h A ) ) |
18 |
|
ax-hvmulid |
|- ( A e. ~H -> ( 1 .h A ) = A ) |
19 |
1 18
|
ax-mp |
|- ( 1 .h A ) = A |
20 |
17 19
|
eqtrdi |
|- ( ( B .ih B ) =/= 0 -> ( ( 1 / ( B .ih B ) ) .h ( ( B .ih B ) .h A ) ) = A ) |
21 |
20
|
adantr |
|- ( ( ( B .ih B ) =/= 0 /\ A e. ( _|_ ` ( _|_ ` { B } ) ) ) -> ( ( 1 / ( B .ih B ) ) .h ( ( B .ih B ) .h A ) ) = A ) |
22 |
8 21
|
eqtr3d |
|- ( ( ( B .ih B ) =/= 0 /\ A e. ( _|_ ` ( _|_ ` { B } ) ) ) -> ( ( 1 / ( B .ih B ) ) .h ( ( A .ih B ) .h B ) ) = A ) |
23 |
1 2
|
hicli |
|- ( A .ih B ) e. CC |
24 |
|
ax-hvmulass |
|- ( ( ( 1 / ( B .ih B ) ) e. CC /\ ( A .ih B ) e. CC /\ B e. ~H ) -> ( ( ( 1 / ( B .ih B ) ) x. ( A .ih B ) ) .h B ) = ( ( 1 / ( B .ih B ) ) .h ( ( A .ih B ) .h B ) ) ) |
25 |
23 2 24
|
mp3an23 |
|- ( ( 1 / ( B .ih B ) ) e. CC -> ( ( ( 1 / ( B .ih B ) ) x. ( A .ih B ) ) .h B ) = ( ( 1 / ( B .ih B ) ) .h ( ( A .ih B ) .h B ) ) ) |
26 |
10 25
|
syl |
|- ( ( B .ih B ) =/= 0 -> ( ( ( 1 / ( B .ih B ) ) x. ( A .ih B ) ) .h B ) = ( ( 1 / ( B .ih B ) ) .h ( ( A .ih B ) .h B ) ) ) |
27 |
|
mulcom |
|- ( ( ( 1 / ( B .ih B ) ) e. CC /\ ( A .ih B ) e. CC ) -> ( ( 1 / ( B .ih B ) ) x. ( A .ih B ) ) = ( ( A .ih B ) x. ( 1 / ( B .ih B ) ) ) ) |
28 |
10 23 27
|
sylancl |
|- ( ( B .ih B ) =/= 0 -> ( ( 1 / ( B .ih B ) ) x. ( A .ih B ) ) = ( ( A .ih B ) x. ( 1 / ( B .ih B ) ) ) ) |
29 |
23 9
|
divreczi |
|- ( ( B .ih B ) =/= 0 -> ( ( A .ih B ) / ( B .ih B ) ) = ( ( A .ih B ) x. ( 1 / ( B .ih B ) ) ) ) |
30 |
28 29
|
eqtr4d |
|- ( ( B .ih B ) =/= 0 -> ( ( 1 / ( B .ih B ) ) x. ( A .ih B ) ) = ( ( A .ih B ) / ( B .ih B ) ) ) |
31 |
30
|
oveq1d |
|- ( ( B .ih B ) =/= 0 -> ( ( ( 1 / ( B .ih B ) ) x. ( A .ih B ) ) .h B ) = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) |
32 |
26 31
|
eqtr3d |
|- ( ( B .ih B ) =/= 0 -> ( ( 1 / ( B .ih B ) ) .h ( ( A .ih B ) .h B ) ) = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) |
33 |
32
|
adantr |
|- ( ( ( B .ih B ) =/= 0 /\ A e. ( _|_ ` ( _|_ ` { B } ) ) ) -> ( ( 1 / ( B .ih B ) ) .h ( ( A .ih B ) .h B ) ) = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) |
34 |
22 33
|
eqtr3d |
|- ( ( ( B .ih B ) =/= 0 /\ A e. ( _|_ ` ( _|_ ` { B } ) ) ) -> A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) |
35 |
34
|
ex |
|- ( ( B .ih B ) =/= 0 -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) ) |
36 |
23 9
|
divclzi |
|- ( ( B .ih B ) =/= 0 -> ( ( A .ih B ) / ( B .ih B ) ) e. CC ) |
37 |
2
|
elexi |
|- B e. _V |
38 |
37
|
snss |
|- ( B e. ~H <-> { B } C_ ~H ) |
39 |
2 38
|
mpbi |
|- { B } C_ ~H |
40 |
|
occl |
|- ( { B } C_ ~H -> ( _|_ ` { B } ) e. CH ) |
41 |
39 40
|
ax-mp |
|- ( _|_ ` { B } ) e. CH |
42 |
41
|
choccli |
|- ( _|_ ` ( _|_ ` { B } ) ) e. CH |
43 |
42
|
chshii |
|- ( _|_ ` ( _|_ ` { B } ) ) e. SH |
44 |
|
h1did |
|- ( B e. ~H -> B e. ( _|_ ` ( _|_ ` { B } ) ) ) |
45 |
2 44
|
ax-mp |
|- B e. ( _|_ ` ( _|_ ` { B } ) ) |
46 |
|
shmulcl |
|- ( ( ( _|_ ` ( _|_ ` { B } ) ) e. SH /\ ( ( A .ih B ) / ( B .ih B ) ) e. CC /\ B e. ( _|_ ` ( _|_ ` { B } ) ) ) -> ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) e. ( _|_ ` ( _|_ ` { B } ) ) ) |
47 |
43 45 46
|
mp3an13 |
|- ( ( ( A .ih B ) / ( B .ih B ) ) e. CC -> ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) e. ( _|_ ` ( _|_ ` { B } ) ) ) |
48 |
36 47
|
syl |
|- ( ( B .ih B ) =/= 0 -> ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) e. ( _|_ ` ( _|_ ` { B } ) ) ) |
49 |
|
eleq1 |
|- ( A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) e. ( _|_ ` ( _|_ ` { B } ) ) ) ) |
50 |
48 49
|
syl5ibrcom |
|- ( ( B .ih B ) =/= 0 -> ( A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) -> A e. ( _|_ ` ( _|_ ` { B } ) ) ) ) |
51 |
35 50
|
impbid |
|- ( ( B .ih B ) =/= 0 -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) ) |
52 |
5 51
|
sylbir |
|- ( B =/= 0h -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) ) |