| Step | Hyp | Ref | Expression | 
						
							| 1 |  | h1de2.1 |  |-  A e. ~H | 
						
							| 2 |  | h1de2.2 |  |-  B e. ~H | 
						
							| 3 |  | his6 |  |-  ( B e. ~H -> ( ( B .ih B ) = 0 <-> B = 0h ) ) | 
						
							| 4 | 2 3 | ax-mp |  |-  ( ( B .ih B ) = 0 <-> B = 0h ) | 
						
							| 5 | 4 | necon3bii |  |-  ( ( B .ih B ) =/= 0 <-> B =/= 0h ) | 
						
							| 6 | 1 2 | h1de2i |  |-  ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( B .ih B ) .h A ) = ( ( A .ih B ) .h B ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( B .ih B ) =/= 0 /\ A e. ( _|_ ` ( _|_ ` { B } ) ) ) -> ( ( B .ih B ) .h A ) = ( ( A .ih B ) .h B ) ) | 
						
							| 8 | 7 | oveq2d |  |-  ( ( ( B .ih B ) =/= 0 /\ A e. ( _|_ ` ( _|_ ` { B } ) ) ) -> ( ( 1 / ( B .ih B ) ) .h ( ( B .ih B ) .h A ) ) = ( ( 1 / ( B .ih B ) ) .h ( ( A .ih B ) .h B ) ) ) | 
						
							| 9 | 2 2 | hicli |  |-  ( B .ih B ) e. CC | 
						
							| 10 | 9 | recclzi |  |-  ( ( B .ih B ) =/= 0 -> ( 1 / ( B .ih B ) ) e. CC ) | 
						
							| 11 |  | ax-hvmulass |  |-  ( ( ( 1 / ( B .ih B ) ) e. CC /\ ( B .ih B ) e. CC /\ A e. ~H ) -> ( ( ( 1 / ( B .ih B ) ) x. ( B .ih B ) ) .h A ) = ( ( 1 / ( B .ih B ) ) .h ( ( B .ih B ) .h A ) ) ) | 
						
							| 12 | 9 1 11 | mp3an23 |  |-  ( ( 1 / ( B .ih B ) ) e. CC -> ( ( ( 1 / ( B .ih B ) ) x. ( B .ih B ) ) .h A ) = ( ( 1 / ( B .ih B ) ) .h ( ( B .ih B ) .h A ) ) ) | 
						
							| 13 | 10 12 | syl |  |-  ( ( B .ih B ) =/= 0 -> ( ( ( 1 / ( B .ih B ) ) x. ( B .ih B ) ) .h A ) = ( ( 1 / ( B .ih B ) ) .h ( ( B .ih B ) .h A ) ) ) | 
						
							| 14 |  | ax-1cn |  |-  1 e. CC | 
						
							| 15 | 14 9 | divcan1zi |  |-  ( ( B .ih B ) =/= 0 -> ( ( 1 / ( B .ih B ) ) x. ( B .ih B ) ) = 1 ) | 
						
							| 16 | 15 | oveq1d |  |-  ( ( B .ih B ) =/= 0 -> ( ( ( 1 / ( B .ih B ) ) x. ( B .ih B ) ) .h A ) = ( 1 .h A ) ) | 
						
							| 17 | 13 16 | eqtr3d |  |-  ( ( B .ih B ) =/= 0 -> ( ( 1 / ( B .ih B ) ) .h ( ( B .ih B ) .h A ) ) = ( 1 .h A ) ) | 
						
							| 18 |  | ax-hvmulid |  |-  ( A e. ~H -> ( 1 .h A ) = A ) | 
						
							| 19 | 1 18 | ax-mp |  |-  ( 1 .h A ) = A | 
						
							| 20 | 17 19 | eqtrdi |  |-  ( ( B .ih B ) =/= 0 -> ( ( 1 / ( B .ih B ) ) .h ( ( B .ih B ) .h A ) ) = A ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( B .ih B ) =/= 0 /\ A e. ( _|_ ` ( _|_ ` { B } ) ) ) -> ( ( 1 / ( B .ih B ) ) .h ( ( B .ih B ) .h A ) ) = A ) | 
						
							| 22 | 8 21 | eqtr3d |  |-  ( ( ( B .ih B ) =/= 0 /\ A e. ( _|_ ` ( _|_ ` { B } ) ) ) -> ( ( 1 / ( B .ih B ) ) .h ( ( A .ih B ) .h B ) ) = A ) | 
						
							| 23 | 1 2 | hicli |  |-  ( A .ih B ) e. CC | 
						
							| 24 |  | ax-hvmulass |  |-  ( ( ( 1 / ( B .ih B ) ) e. CC /\ ( A .ih B ) e. CC /\ B e. ~H ) -> ( ( ( 1 / ( B .ih B ) ) x. ( A .ih B ) ) .h B ) = ( ( 1 / ( B .ih B ) ) .h ( ( A .ih B ) .h B ) ) ) | 
						
							| 25 | 23 2 24 | mp3an23 |  |-  ( ( 1 / ( B .ih B ) ) e. CC -> ( ( ( 1 / ( B .ih B ) ) x. ( A .ih B ) ) .h B ) = ( ( 1 / ( B .ih B ) ) .h ( ( A .ih B ) .h B ) ) ) | 
						
							| 26 | 10 25 | syl |  |-  ( ( B .ih B ) =/= 0 -> ( ( ( 1 / ( B .ih B ) ) x. ( A .ih B ) ) .h B ) = ( ( 1 / ( B .ih B ) ) .h ( ( A .ih B ) .h B ) ) ) | 
						
							| 27 |  | mulcom |  |-  ( ( ( 1 / ( B .ih B ) ) e. CC /\ ( A .ih B ) e. CC ) -> ( ( 1 / ( B .ih B ) ) x. ( A .ih B ) ) = ( ( A .ih B ) x. ( 1 / ( B .ih B ) ) ) ) | 
						
							| 28 | 10 23 27 | sylancl |  |-  ( ( B .ih B ) =/= 0 -> ( ( 1 / ( B .ih B ) ) x. ( A .ih B ) ) = ( ( A .ih B ) x. ( 1 / ( B .ih B ) ) ) ) | 
						
							| 29 | 23 9 | divreczi |  |-  ( ( B .ih B ) =/= 0 -> ( ( A .ih B ) / ( B .ih B ) ) = ( ( A .ih B ) x. ( 1 / ( B .ih B ) ) ) ) | 
						
							| 30 | 28 29 | eqtr4d |  |-  ( ( B .ih B ) =/= 0 -> ( ( 1 / ( B .ih B ) ) x. ( A .ih B ) ) = ( ( A .ih B ) / ( B .ih B ) ) ) | 
						
							| 31 | 30 | oveq1d |  |-  ( ( B .ih B ) =/= 0 -> ( ( ( 1 / ( B .ih B ) ) x. ( A .ih B ) ) .h B ) = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) | 
						
							| 32 | 26 31 | eqtr3d |  |-  ( ( B .ih B ) =/= 0 -> ( ( 1 / ( B .ih B ) ) .h ( ( A .ih B ) .h B ) ) = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ( B .ih B ) =/= 0 /\ A e. ( _|_ ` ( _|_ ` { B } ) ) ) -> ( ( 1 / ( B .ih B ) ) .h ( ( A .ih B ) .h B ) ) = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) | 
						
							| 34 | 22 33 | eqtr3d |  |-  ( ( ( B .ih B ) =/= 0 /\ A e. ( _|_ ` ( _|_ ` { B } ) ) ) -> A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) | 
						
							| 35 | 34 | ex |  |-  ( ( B .ih B ) =/= 0 -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) ) | 
						
							| 36 | 23 9 | divclzi |  |-  ( ( B .ih B ) =/= 0 -> ( ( A .ih B ) / ( B .ih B ) ) e. CC ) | 
						
							| 37 | 2 | elexi |  |-  B e. _V | 
						
							| 38 | 37 | snss |  |-  ( B e. ~H <-> { B } C_ ~H ) | 
						
							| 39 | 2 38 | mpbi |  |-  { B } C_ ~H | 
						
							| 40 |  | occl |  |-  ( { B } C_ ~H -> ( _|_ ` { B } ) e. CH ) | 
						
							| 41 | 39 40 | ax-mp |  |-  ( _|_ ` { B } ) e. CH | 
						
							| 42 | 41 | choccli |  |-  ( _|_ ` ( _|_ ` { B } ) ) e. CH | 
						
							| 43 | 42 | chshii |  |-  ( _|_ ` ( _|_ ` { B } ) ) e. SH | 
						
							| 44 |  | h1did |  |-  ( B e. ~H -> B e. ( _|_ ` ( _|_ ` { B } ) ) ) | 
						
							| 45 | 2 44 | ax-mp |  |-  B e. ( _|_ ` ( _|_ ` { B } ) ) | 
						
							| 46 |  | shmulcl |  |-  ( ( ( _|_ ` ( _|_ ` { B } ) ) e. SH /\ ( ( A .ih B ) / ( B .ih B ) ) e. CC /\ B e. ( _|_ ` ( _|_ ` { B } ) ) ) -> ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) e. ( _|_ ` ( _|_ ` { B } ) ) ) | 
						
							| 47 | 43 45 46 | mp3an13 |  |-  ( ( ( A .ih B ) / ( B .ih B ) ) e. CC -> ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) e. ( _|_ ` ( _|_ ` { B } ) ) ) | 
						
							| 48 | 36 47 | syl |  |-  ( ( B .ih B ) =/= 0 -> ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) e. ( _|_ ` ( _|_ ` { B } ) ) ) | 
						
							| 49 |  | eleq1 |  |-  ( A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) e. ( _|_ ` ( _|_ ` { B } ) ) ) ) | 
						
							| 50 | 48 49 | syl5ibrcom |  |-  ( ( B .ih B ) =/= 0 -> ( A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) -> A e. ( _|_ ` ( _|_ ` { B } ) ) ) ) | 
						
							| 51 | 35 50 | impbid |  |-  ( ( B .ih B ) =/= 0 -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) ) | 
						
							| 52 | 5 51 | sylbir |  |-  ( B =/= 0h -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) ) |