Step |
Hyp |
Ref |
Expression |
1 |
|
h1de2.1 |
|- A e. ~H |
2 |
|
h1de2.2 |
|- B e. ~H |
3 |
1
|
elexi |
|- A e. _V |
4 |
3
|
elsn |
|- ( A e. { 0h } <-> A = 0h ) |
5 |
|
hsn0elch |
|- { 0h } e. CH |
6 |
5
|
ococi |
|- ( _|_ ` ( _|_ ` { 0h } ) ) = { 0h } |
7 |
6
|
eleq2i |
|- ( A e. ( _|_ ` ( _|_ ` { 0h } ) ) <-> A e. { 0h } ) |
8 |
|
ax-hvmul0 |
|- ( B e. ~H -> ( 0 .h B ) = 0h ) |
9 |
2 8
|
ax-mp |
|- ( 0 .h B ) = 0h |
10 |
9
|
eqeq2i |
|- ( A = ( 0 .h B ) <-> A = 0h ) |
11 |
4 7 10
|
3bitr4ri |
|- ( A = ( 0 .h B ) <-> A e. ( _|_ ` ( _|_ ` { 0h } ) ) ) |
12 |
|
sneq |
|- ( B = 0h -> { B } = { 0h } ) |
13 |
12
|
fveq2d |
|- ( B = 0h -> ( _|_ ` { B } ) = ( _|_ ` { 0h } ) ) |
14 |
13
|
fveq2d |
|- ( B = 0h -> ( _|_ ` ( _|_ ` { B } ) ) = ( _|_ ` ( _|_ ` { 0h } ) ) ) |
15 |
14
|
eleq2d |
|- ( B = 0h -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> A e. ( _|_ ` ( _|_ ` { 0h } ) ) ) ) |
16 |
11 15
|
bitr4id |
|- ( B = 0h -> ( A = ( 0 .h B ) <-> A e. ( _|_ ` ( _|_ ` { B } ) ) ) ) |
17 |
|
0cn |
|- 0 e. CC |
18 |
|
oveq1 |
|- ( x = 0 -> ( x .h B ) = ( 0 .h B ) ) |
19 |
18
|
rspceeqv |
|- ( ( 0 e. CC /\ A = ( 0 .h B ) ) -> E. x e. CC A = ( x .h B ) ) |
20 |
17 19
|
mpan |
|- ( A = ( 0 .h B ) -> E. x e. CC A = ( x .h B ) ) |
21 |
16 20
|
syl6bir |
|- ( B = 0h -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> E. x e. CC A = ( x .h B ) ) ) |
22 |
1 2
|
h1de2bi |
|- ( B =/= 0h -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) ) |
23 |
|
his6 |
|- ( B e. ~H -> ( ( B .ih B ) = 0 <-> B = 0h ) ) |
24 |
2 23
|
ax-mp |
|- ( ( B .ih B ) = 0 <-> B = 0h ) |
25 |
24
|
necon3bii |
|- ( ( B .ih B ) =/= 0 <-> B =/= 0h ) |
26 |
1 2
|
hicli |
|- ( A .ih B ) e. CC |
27 |
2 2
|
hicli |
|- ( B .ih B ) e. CC |
28 |
26 27
|
divclzi |
|- ( ( B .ih B ) =/= 0 -> ( ( A .ih B ) / ( B .ih B ) ) e. CC ) |
29 |
25 28
|
sylbir |
|- ( B =/= 0h -> ( ( A .ih B ) / ( B .ih B ) ) e. CC ) |
30 |
|
oveq1 |
|- ( x = ( ( A .ih B ) / ( B .ih B ) ) -> ( x .h B ) = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) |
31 |
30
|
rspceeqv |
|- ( ( ( ( A .ih B ) / ( B .ih B ) ) e. CC /\ A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) -> E. x e. CC A = ( x .h B ) ) |
32 |
29 31
|
sylan |
|- ( ( B =/= 0h /\ A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) -> E. x e. CC A = ( x .h B ) ) |
33 |
32
|
ex |
|- ( B =/= 0h -> ( A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) -> E. x e. CC A = ( x .h B ) ) ) |
34 |
22 33
|
sylbid |
|- ( B =/= 0h -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> E. x e. CC A = ( x .h B ) ) ) |
35 |
21 34
|
pm2.61ine |
|- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> E. x e. CC A = ( x .h B ) ) |
36 |
|
snssi |
|- ( B e. ~H -> { B } C_ ~H ) |
37 |
|
occl |
|- ( { B } C_ ~H -> ( _|_ ` { B } ) e. CH ) |
38 |
2 36 37
|
mp2b |
|- ( _|_ ` { B } ) e. CH |
39 |
38
|
choccli |
|- ( _|_ ` ( _|_ ` { B } ) ) e. CH |
40 |
39
|
chshii |
|- ( _|_ ` ( _|_ ` { B } ) ) e. SH |
41 |
|
h1did |
|- ( B e. ~H -> B e. ( _|_ ` ( _|_ ` { B } ) ) ) |
42 |
2 41
|
ax-mp |
|- B e. ( _|_ ` ( _|_ ` { B } ) ) |
43 |
|
shmulcl |
|- ( ( ( _|_ ` ( _|_ ` { B } ) ) e. SH /\ x e. CC /\ B e. ( _|_ ` ( _|_ ` { B } ) ) ) -> ( x .h B ) e. ( _|_ ` ( _|_ ` { B } ) ) ) |
44 |
40 42 43
|
mp3an13 |
|- ( x e. CC -> ( x .h B ) e. ( _|_ ` ( _|_ ` { B } ) ) ) |
45 |
|
eleq1 |
|- ( A = ( x .h B ) -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> ( x .h B ) e. ( _|_ ` ( _|_ ` { B } ) ) ) ) |
46 |
44 45
|
syl5ibrcom |
|- ( x e. CC -> ( A = ( x .h B ) -> A e. ( _|_ ` ( _|_ ` { B } ) ) ) ) |
47 |
46
|
rexlimiv |
|- ( E. x e. CC A = ( x .h B ) -> A e. ( _|_ ` ( _|_ ` { B } ) ) ) |
48 |
35 47
|
impbii |
|- ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> E. x e. CC A = ( x .h B ) ) |