| Step | Hyp | Ref | Expression | 
						
							| 1 |  | h1deot.1 |  |-  B e. ~H | 
						
							| 2 |  | snssi |  |-  ( B e. ~H -> { B } C_ ~H ) | 
						
							| 3 |  | occl |  |-  ( { B } C_ ~H -> ( _|_ ` { B } ) e. CH ) | 
						
							| 4 | 1 2 3 | mp2b |  |-  ( _|_ ` { B } ) e. CH | 
						
							| 5 | 4 | chssii |  |-  ( _|_ ` { B } ) C_ ~H | 
						
							| 6 |  | ocel |  |-  ( ( _|_ ` { B } ) C_ ~H -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> ( A e. ~H /\ A. x e. ( _|_ ` { B } ) ( A .ih x ) = 0 ) ) ) | 
						
							| 7 | 5 6 | ax-mp |  |-  ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> ( A e. ~H /\ A. x e. ( _|_ ` { B } ) ( A .ih x ) = 0 ) ) | 
						
							| 8 | 1 | h1deoi |  |-  ( x e. ( _|_ ` { B } ) <-> ( x e. ~H /\ ( x .ih B ) = 0 ) ) | 
						
							| 9 |  | orthcom |  |-  ( ( x e. ~H /\ B e. ~H ) -> ( ( x .ih B ) = 0 <-> ( B .ih x ) = 0 ) ) | 
						
							| 10 | 1 9 | mpan2 |  |-  ( x e. ~H -> ( ( x .ih B ) = 0 <-> ( B .ih x ) = 0 ) ) | 
						
							| 11 | 10 | pm5.32i |  |-  ( ( x e. ~H /\ ( x .ih B ) = 0 ) <-> ( x e. ~H /\ ( B .ih x ) = 0 ) ) | 
						
							| 12 | 8 11 | bitri |  |-  ( x e. ( _|_ ` { B } ) <-> ( x e. ~H /\ ( B .ih x ) = 0 ) ) | 
						
							| 13 | 12 | imbi1i |  |-  ( ( x e. ( _|_ ` { B } ) -> ( A .ih x ) = 0 ) <-> ( ( x e. ~H /\ ( B .ih x ) = 0 ) -> ( A .ih x ) = 0 ) ) | 
						
							| 14 |  | impexp |  |-  ( ( ( x e. ~H /\ ( B .ih x ) = 0 ) -> ( A .ih x ) = 0 ) <-> ( x e. ~H -> ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) ) ) | 
						
							| 15 | 13 14 | bitri |  |-  ( ( x e. ( _|_ ` { B } ) -> ( A .ih x ) = 0 ) <-> ( x e. ~H -> ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) ) ) | 
						
							| 16 | 15 | ralbii2 |  |-  ( A. x e. ( _|_ ` { B } ) ( A .ih x ) = 0 <-> A. x e. ~H ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) ) | 
						
							| 17 | 16 | anbi2i |  |-  ( ( A e. ~H /\ A. x e. ( _|_ ` { B } ) ( A .ih x ) = 0 ) <-> ( A e. ~H /\ A. x e. ~H ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) ) ) | 
						
							| 18 | 7 17 | bitri |  |-  ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> ( A e. ~H /\ A. x e. ~H ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) ) ) |