| Step | Hyp | Ref | Expression | 
						
							| 1 |  | h1deot.1 |  |-  B e. ~H | 
						
							| 2 |  | snssi |  |-  ( B e. ~H -> { B } C_ ~H ) | 
						
							| 3 |  | ocel |  |-  ( { B } C_ ~H -> ( A e. ( _|_ ` { B } ) <-> ( A e. ~H /\ A. x e. { B } ( A .ih x ) = 0 ) ) ) | 
						
							| 4 | 1 2 3 | mp2b |  |-  ( A e. ( _|_ ` { B } ) <-> ( A e. ~H /\ A. x e. { B } ( A .ih x ) = 0 ) ) | 
						
							| 5 | 1 | elexi |  |-  B e. _V | 
						
							| 6 |  | oveq2 |  |-  ( x = B -> ( A .ih x ) = ( A .ih B ) ) | 
						
							| 7 | 6 | eqeq1d |  |-  ( x = B -> ( ( A .ih x ) = 0 <-> ( A .ih B ) = 0 ) ) | 
						
							| 8 | 5 7 | ralsn |  |-  ( A. x e. { B } ( A .ih x ) = 0 <-> ( A .ih B ) = 0 ) | 
						
							| 9 | 8 | anbi2i |  |-  ( ( A e. ~H /\ A. x e. { B } ( A .ih x ) = 0 ) <-> ( A e. ~H /\ ( A .ih B ) = 0 ) ) | 
						
							| 10 | 4 9 | bitri |  |-  ( A e. ( _|_ ` { B } ) <-> ( A e. ~H /\ ( A .ih B ) = 0 ) ) |