Metamath Proof Explorer


Theorem h1deoi

Description: Membership in orthocomplement of 1-dimensional subspace. (Contributed by NM, 7-Jul-2001) (New usage is discouraged.)

Ref Expression
Hypothesis h1deot.1
|- B e. ~H
Assertion h1deoi
|- ( A e. ( _|_ ` { B } ) <-> ( A e. ~H /\ ( A .ih B ) = 0 ) )

Proof

Step Hyp Ref Expression
1 h1deot.1
 |-  B e. ~H
2 snssi
 |-  ( B e. ~H -> { B } C_ ~H )
3 ocel
 |-  ( { B } C_ ~H -> ( A e. ( _|_ ` { B } ) <-> ( A e. ~H /\ A. x e. { B } ( A .ih x ) = 0 ) ) )
4 1 2 3 mp2b
 |-  ( A e. ( _|_ ` { B } ) <-> ( A e. ~H /\ A. x e. { B } ( A .ih x ) = 0 ) )
5 1 elexi
 |-  B e. _V
6 oveq2
 |-  ( x = B -> ( A .ih x ) = ( A .ih B ) )
7 6 eqeq1d
 |-  ( x = B -> ( ( A .ih x ) = 0 <-> ( A .ih B ) = 0 ) )
8 5 7 ralsn
 |-  ( A. x e. { B } ( A .ih x ) = 0 <-> ( A .ih B ) = 0 )
9 8 anbi2i
 |-  ( ( A e. ~H /\ A. x e. { B } ( A .ih x ) = 0 ) <-> ( A e. ~H /\ ( A .ih B ) = 0 ) )
10 4 9 bitri
 |-  ( A e. ( _|_ ` { B } ) <-> ( A e. ~H /\ ( A .ih B ) = 0 ) )