Step |
Hyp |
Ref |
Expression |
1 |
|
h1deot.1 |
|- B e. ~H |
2 |
|
snssi |
|- ( B e. ~H -> { B } C_ ~H ) |
3 |
|
ocel |
|- ( { B } C_ ~H -> ( A e. ( _|_ ` { B } ) <-> ( A e. ~H /\ A. x e. { B } ( A .ih x ) = 0 ) ) ) |
4 |
1 2 3
|
mp2b |
|- ( A e. ( _|_ ` { B } ) <-> ( A e. ~H /\ A. x e. { B } ( A .ih x ) = 0 ) ) |
5 |
1
|
elexi |
|- B e. _V |
6 |
|
oveq2 |
|- ( x = B -> ( A .ih x ) = ( A .ih B ) ) |
7 |
6
|
eqeq1d |
|- ( x = B -> ( ( A .ih x ) = 0 <-> ( A .ih B ) = 0 ) ) |
8 |
5 7
|
ralsn |
|- ( A. x e. { B } ( A .ih x ) = 0 <-> ( A .ih B ) = 0 ) |
9 |
8
|
anbi2i |
|- ( ( A e. ~H /\ A. x e. { B } ( A .ih x ) = 0 ) <-> ( A e. ~H /\ ( A .ih B ) = 0 ) ) |
10 |
4 9
|
bitri |
|- ( A e. ( _|_ ` { B } ) <-> ( A e. ~H /\ ( A .ih B ) = 0 ) ) |