Metamath Proof Explorer


Theorem h1did

Description: A generating vector belongs to the 1-dimensional subspace it generates. (Contributed by NM, 22-Jul-2001) (New usage is discouraged.)

Ref Expression
Assertion h1did
|- ( A e. ~H -> A e. ( _|_ ` ( _|_ ` { A } ) ) )

Proof

Step Hyp Ref Expression
1 snssi
 |-  ( A e. ~H -> { A } C_ ~H )
2 ococss
 |-  ( { A } C_ ~H -> { A } C_ ( _|_ ` ( _|_ ` { A } ) ) )
3 1 2 syl
 |-  ( A e. ~H -> { A } C_ ( _|_ ` ( _|_ ` { A } ) ) )
4 snssg
 |-  ( A e. ~H -> ( A e. ( _|_ ` ( _|_ ` { A } ) ) <-> { A } C_ ( _|_ ` ( _|_ ` { A } ) ) ) )
5 3 4 mpbird
 |-  ( A e. ~H -> A e. ( _|_ ` ( _|_ ` { A } ) ) )