| Step | Hyp | Ref | Expression | 
						
							| 1 |  | h2h.1 |  |-  U = <. <. +h , .h >. , normh >. | 
						
							| 2 |  | h2h.2 |  |-  U e. NrmCVec | 
						
							| 3 |  | eqid |  |-  ( .sOLD ` <. <. +h , .h >. , normh >. ) = ( .sOLD ` <. <. +h , .h >. , normh >. ) | 
						
							| 4 | 3 | smfval |  |-  ( .sOLD ` <. <. +h , .h >. , normh >. ) = ( 2nd ` ( 1st ` <. <. +h , .h >. , normh >. ) ) | 
						
							| 5 |  | opex |  |-  <. +h , .h >. e. _V | 
						
							| 6 | 1 2 | eqeltrri |  |-  <. <. +h , .h >. , normh >. e. NrmCVec | 
						
							| 7 |  | nvex |  |-  ( <. <. +h , .h >. , normh >. e. NrmCVec -> ( +h e. _V /\ .h e. _V /\ normh e. _V ) ) | 
						
							| 8 | 6 7 | ax-mp |  |-  ( +h e. _V /\ .h e. _V /\ normh e. _V ) | 
						
							| 9 | 8 | simp3i |  |-  normh e. _V | 
						
							| 10 | 5 9 | op1st |  |-  ( 1st ` <. <. +h , .h >. , normh >. ) = <. +h , .h >. | 
						
							| 11 | 10 | fveq2i |  |-  ( 2nd ` ( 1st ` <. <. +h , .h >. , normh >. ) ) = ( 2nd ` <. +h , .h >. ) | 
						
							| 12 | 8 | simp1i |  |-  +h e. _V | 
						
							| 13 | 8 | simp2i |  |-  .h e. _V | 
						
							| 14 | 12 13 | op2nd |  |-  ( 2nd ` <. +h , .h >. ) = .h | 
						
							| 15 | 4 11 14 | 3eqtrri |  |-  .h = ( .sOLD ` <. <. +h , .h >. , normh >. ) | 
						
							| 16 | 1 | fveq2i |  |-  ( .sOLD ` U ) = ( .sOLD ` <. <. +h , .h >. , normh >. ) | 
						
							| 17 | 15 16 | eqtr4i |  |-  .h = ( .sOLD ` U ) |