| Step |
Hyp |
Ref |
Expression |
| 1 |
|
h2h.1 |
|- U = <. <. +h , .h >. , normh >. |
| 2 |
|
h2h.2 |
|- U e. NrmCVec |
| 3 |
|
eqid |
|- ( +v ` <. <. +h , .h >. , normh >. ) = ( +v ` <. <. +h , .h >. , normh >. ) |
| 4 |
3
|
vafval |
|- ( +v ` <. <. +h , .h >. , normh >. ) = ( 1st ` ( 1st ` <. <. +h , .h >. , normh >. ) ) |
| 5 |
|
opex |
|- <. +h , .h >. e. _V |
| 6 |
1 2
|
eqeltrri |
|- <. <. +h , .h >. , normh >. e. NrmCVec |
| 7 |
|
nvex |
|- ( <. <. +h , .h >. , normh >. e. NrmCVec -> ( +h e. _V /\ .h e. _V /\ normh e. _V ) ) |
| 8 |
6 7
|
ax-mp |
|- ( +h e. _V /\ .h e. _V /\ normh e. _V ) |
| 9 |
8
|
simp3i |
|- normh e. _V |
| 10 |
5 9
|
op1st |
|- ( 1st ` <. <. +h , .h >. , normh >. ) = <. +h , .h >. |
| 11 |
10
|
fveq2i |
|- ( 1st ` ( 1st ` <. <. +h , .h >. , normh >. ) ) = ( 1st ` <. +h , .h >. ) |
| 12 |
8
|
simp1i |
|- +h e. _V |
| 13 |
8
|
simp2i |
|- .h e. _V |
| 14 |
12 13
|
op1st |
|- ( 1st ` <. +h , .h >. ) = +h |
| 15 |
4 11 14
|
3eqtrri |
|- +h = ( +v ` <. <. +h , .h >. , normh >. ) |
| 16 |
1
|
fveq2i |
|- ( +v ` U ) = ( +v ` <. <. +h , .h >. , normh >. ) |
| 17 |
15 16
|
eqtr4i |
|- +h = ( +v ` U ) |