Metamath Proof Explorer


Theorem hadbi

Description: The adder sum is the same as the triple biconditional. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Assertion hadbi
|- ( hadd ( ph , ps , ch ) <-> ( ( ph <-> ps ) <-> ch ) )

Proof

Step Hyp Ref Expression
1 df-xor
 |-  ( ( ( ph \/_ ps ) \/_ ch ) <-> -. ( ( ph \/_ ps ) <-> ch ) )
2 df-had
 |-  ( hadd ( ph , ps , ch ) <-> ( ( ph \/_ ps ) \/_ ch ) )
3 xnor
 |-  ( ( ph <-> ps ) <-> -. ( ph \/_ ps ) )
4 3 bibi1i
 |-  ( ( ( ph <-> ps ) <-> ch ) <-> ( -. ( ph \/_ ps ) <-> ch ) )
5 nbbn
 |-  ( ( -. ( ph \/_ ps ) <-> ch ) <-> -. ( ( ph \/_ ps ) <-> ch ) )
6 4 5 bitri
 |-  ( ( ( ph <-> ps ) <-> ch ) <-> -. ( ( ph \/_ ps ) <-> ch ) )
7 1 2 6 3bitr4i
 |-  ( hadd ( ph , ps , ch ) <-> ( ( ph <-> ps ) <-> ch ) )