| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-xor |
|- ( ( ( ph \/_ ps ) \/_ ch ) <-> -. ( ( ph \/_ ps ) <-> ch ) ) |
| 2 |
|
df-had |
|- ( hadd ( ph , ps , ch ) <-> ( ( ph \/_ ps ) \/_ ch ) ) |
| 3 |
|
xnor |
|- ( ( ph <-> ps ) <-> -. ( ph \/_ ps ) ) |
| 4 |
3
|
bibi1i |
|- ( ( ( ph <-> ps ) <-> ch ) <-> ( -. ( ph \/_ ps ) <-> ch ) ) |
| 5 |
|
nbbn |
|- ( ( -. ( ph \/_ ps ) <-> ch ) <-> -. ( ( ph \/_ ps ) <-> ch ) ) |
| 6 |
4 5
|
bitri |
|- ( ( ( ph <-> ps ) <-> ch ) <-> -. ( ( ph \/_ ps ) <-> ch ) ) |
| 7 |
1 2 6
|
3bitr4i |
|- ( hadd ( ph , ps , ch ) <-> ( ( ph <-> ps ) <-> ch ) ) |