| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hadbid.1 |
|- ( ph -> ( ps <-> ch ) ) |
| 2 |
|
hadbid.2 |
|- ( ph -> ( th <-> ta ) ) |
| 3 |
|
hadbid.3 |
|- ( ph -> ( et <-> ze ) ) |
| 4 |
1 2
|
xorbi12d |
|- ( ph -> ( ( ps \/_ th ) <-> ( ch \/_ ta ) ) ) |
| 5 |
4 3
|
xorbi12d |
|- ( ph -> ( ( ( ps \/_ th ) \/_ et ) <-> ( ( ch \/_ ta ) \/_ ze ) ) ) |
| 6 |
|
df-had |
|- ( hadd ( ps , th , et ) <-> ( ( ps \/_ th ) \/_ et ) ) |
| 7 |
|
df-had |
|- ( hadd ( ch , ta , ze ) <-> ( ( ch \/_ ta ) \/_ ze ) ) |
| 8 |
5 6 7
|
3bitr4g |
|- ( ph -> ( hadd ( ps , th , et ) <-> hadd ( ch , ta , ze ) ) ) |