Description: Equality theorem for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hadbii.1 | |- ( ph <-> ps ) |
|
| hadbii.2 | |- ( ch <-> th ) |
||
| hadbii.3 | |- ( ta <-> et ) |
||
| Assertion | hadbi123i | |- ( hadd ( ph , ch , ta ) <-> hadd ( ps , th , et ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hadbii.1 | |- ( ph <-> ps ) |
|
| 2 | hadbii.2 | |- ( ch <-> th ) |
|
| 3 | hadbii.3 | |- ( ta <-> et ) |
|
| 4 | 1 | a1i | |- ( T. -> ( ph <-> ps ) ) |
| 5 | 2 | a1i | |- ( T. -> ( ch <-> th ) ) |
| 6 | 3 | a1i | |- ( T. -> ( ta <-> et ) ) |
| 7 | 4 5 6 | hadbi123d | |- ( T. -> ( hadd ( ph , ch , ta ) <-> hadd ( ps , th , et ) ) ) |
| 8 | 7 | mptru | |- ( hadd ( ph , ch , ta ) <-> hadd ( ps , th , et ) ) |