Metamath Proof Explorer


Theorem hadcomaOLD

Description: Obsolete version of hadcoma as of 17-Dec-2023. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion hadcomaOLD
|- ( hadd ( ph , ps , ch ) <-> hadd ( ps , ph , ch ) )

Proof

Step Hyp Ref Expression
1 xorcom
 |-  ( ( ph \/_ ps ) <-> ( ps \/_ ph ) )
2 biid
 |-  ( ch <-> ch )
3 1 2 xorbi12i
 |-  ( ( ( ph \/_ ps ) \/_ ch ) <-> ( ( ps \/_ ph ) \/_ ch ) )
4 df-had
 |-  ( hadd ( ph , ps , ch ) <-> ( ( ph \/_ ps ) \/_ ch ) )
5 df-had
 |-  ( hadd ( ps , ph , ch ) <-> ( ( ps \/_ ph ) \/_ ch ) )
6 3 4 5 3bitr4i
 |-  ( hadd ( ph , ps , ch ) <-> hadd ( ps , ph , ch ) )