Metamath Proof Explorer


Theorem hadnot

Description: The adder sum distributes over negation. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof shortened by Wolf Lammen, 11-Jul-2020)

Ref Expression
Assertion hadnot
|- ( -. hadd ( ph , ps , ch ) <-> hadd ( -. ph , -. ps , -. ch ) )

Proof

Step Hyp Ref Expression
1 notbi
 |-  ( ( ph <-> ps ) <-> ( -. ph <-> -. ps ) )
2 1 bibi1i
 |-  ( ( ( ph <-> ps ) <-> -. ch ) <-> ( ( -. ph <-> -. ps ) <-> -. ch ) )
3 xor3
 |-  ( -. ( ( ph <-> ps ) <-> ch ) <-> ( ( ph <-> ps ) <-> -. ch ) )
4 hadbi
 |-  ( hadd ( ph , ps , ch ) <-> ( ( ph <-> ps ) <-> ch ) )
5 3 4 xchnxbir
 |-  ( -. hadd ( ph , ps , ch ) <-> ( ( ph <-> ps ) <-> -. ch ) )
6 hadbi
 |-  ( hadd ( -. ph , -. ps , -. ch ) <-> ( ( -. ph <-> -. ps ) <-> -. ch ) )
7 2 5 6 3bitr4i
 |-  ( -. hadd ( ph , ps , ch ) <-> hadd ( -. ph , -. ps , -. ch ) )