Step |
Hyp |
Ref |
Expression |
1 |
|
ppncan |
|- ( ( A e. CC /\ B e. CC /\ A e. CC ) -> ( ( A + B ) + ( A - B ) ) = ( A + A ) ) |
2 |
1
|
3anidm13 |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) + ( A - B ) ) = ( A + A ) ) |
3 |
|
2times |
|- ( A e. CC -> ( 2 x. A ) = ( A + A ) ) |
4 |
3
|
adantr |
|- ( ( A e. CC /\ B e. CC ) -> ( 2 x. A ) = ( A + A ) ) |
5 |
2 4
|
eqtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) + ( A - B ) ) = ( 2 x. A ) ) |
6 |
5
|
oveq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) + ( A - B ) ) / 2 ) = ( ( 2 x. A ) / 2 ) ) |
7 |
|
addcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
8 |
|
subcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
9 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
10 |
|
divdir |
|- ( ( ( A + B ) e. CC /\ ( A - B ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( A + B ) + ( A - B ) ) / 2 ) = ( ( ( A + B ) / 2 ) + ( ( A - B ) / 2 ) ) ) |
11 |
9 10
|
mp3an3 |
|- ( ( ( A + B ) e. CC /\ ( A - B ) e. CC ) -> ( ( ( A + B ) + ( A - B ) ) / 2 ) = ( ( ( A + B ) / 2 ) + ( ( A - B ) / 2 ) ) ) |
12 |
7 8 11
|
syl2anc |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) + ( A - B ) ) / 2 ) = ( ( ( A + B ) / 2 ) + ( ( A - B ) / 2 ) ) ) |
13 |
|
2cn |
|- 2 e. CC |
14 |
|
2ne0 |
|- 2 =/= 0 |
15 |
|
divcan3 |
|- ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. A ) / 2 ) = A ) |
16 |
13 14 15
|
mp3an23 |
|- ( A e. CC -> ( ( 2 x. A ) / 2 ) = A ) |
17 |
16
|
adantr |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. A ) / 2 ) = A ) |
18 |
6 12 17
|
3eqtr3d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) / 2 ) + ( ( A - B ) / 2 ) ) = A ) |
19 |
|
pnncan |
|- ( ( A e. CC /\ B e. CC /\ B e. CC ) -> ( ( A + B ) - ( A - B ) ) = ( B + B ) ) |
20 |
19
|
3anidm23 |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) - ( A - B ) ) = ( B + B ) ) |
21 |
|
2times |
|- ( B e. CC -> ( 2 x. B ) = ( B + B ) ) |
22 |
21
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> ( 2 x. B ) = ( B + B ) ) |
23 |
20 22
|
eqtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) - ( A - B ) ) = ( 2 x. B ) ) |
24 |
23
|
oveq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) - ( A - B ) ) / 2 ) = ( ( 2 x. B ) / 2 ) ) |
25 |
|
divsubdir |
|- ( ( ( A + B ) e. CC /\ ( A - B ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( A + B ) - ( A - B ) ) / 2 ) = ( ( ( A + B ) / 2 ) - ( ( A - B ) / 2 ) ) ) |
26 |
9 25
|
mp3an3 |
|- ( ( ( A + B ) e. CC /\ ( A - B ) e. CC ) -> ( ( ( A + B ) - ( A - B ) ) / 2 ) = ( ( ( A + B ) / 2 ) - ( ( A - B ) / 2 ) ) ) |
27 |
7 8 26
|
syl2anc |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) - ( A - B ) ) / 2 ) = ( ( ( A + B ) / 2 ) - ( ( A - B ) / 2 ) ) ) |
28 |
|
divcan3 |
|- ( ( B e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. B ) / 2 ) = B ) |
29 |
13 14 28
|
mp3an23 |
|- ( B e. CC -> ( ( 2 x. B ) / 2 ) = B ) |
30 |
29
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. B ) / 2 ) = B ) |
31 |
24 27 30
|
3eqtr3d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) / 2 ) - ( ( A - B ) / 2 ) ) = B ) |
32 |
18 31
|
jca |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A + B ) / 2 ) + ( ( A - B ) / 2 ) ) = A /\ ( ( ( A + B ) / 2 ) - ( ( A - B ) / 2 ) ) = B ) ) |