Description: Floor of ( 1 / 2 ) . (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | halffl | |- ( |_ ` ( 1 / 2 ) ) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re | |- 0 e. RR |
|
2 | halfre | |- ( 1 / 2 ) e. RR |
|
3 | halfgt0 | |- 0 < ( 1 / 2 ) |
|
4 | 1 2 3 | ltleii | |- 0 <_ ( 1 / 2 ) |
5 | halflt1 | |- ( 1 / 2 ) < 1 |
|
6 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
7 | 5 6 | breqtri | |- ( 1 / 2 ) < ( 0 + 1 ) |
8 | 0z | |- 0 e. ZZ |
|
9 | flbi | |- ( ( ( 1 / 2 ) e. RR /\ 0 e. ZZ ) -> ( ( |_ ` ( 1 / 2 ) ) = 0 <-> ( 0 <_ ( 1 / 2 ) /\ ( 1 / 2 ) < ( 0 + 1 ) ) ) ) |
|
10 | 2 8 9 | mp2an | |- ( ( |_ ` ( 1 / 2 ) ) = 0 <-> ( 0 <_ ( 1 / 2 ) /\ ( 1 / 2 ) < ( 0 + 1 ) ) ) |
11 | 4 7 10 | mpbir2an | |- ( |_ ` ( 1 / 2 ) ) = 0 |