Metamath Proof Explorer


Theorem halflt1

Description: One-half is less than one. (Contributed by NM, 24-Feb-2005)

Ref Expression
Assertion halflt1
|- ( 1 / 2 ) < 1

Proof

Step Hyp Ref Expression
1 1div1e1
 |-  ( 1 / 1 ) = 1
2 1lt2
 |-  1 < 2
3 1 2 eqbrtri
 |-  ( 1 / 1 ) < 2
4 1re
 |-  1 e. RR
5 2re
 |-  2 e. RR
6 0lt1
 |-  0 < 1
7 2pos
 |-  0 < 2
8 4 4 5 6 7 ltdiv23ii
 |-  ( ( 1 / 1 ) < 2 <-> ( 1 / 2 ) < 1 )
9 3 8 mpbi
 |-  ( 1 / 2 ) < 1