Metamath Proof Explorer


Theorem halfnneg2

Description: A number is nonnegative iff its half is nonnegative. (Contributed by NM, 9-Dec-2005)

Ref Expression
Assertion halfnneg2
|- ( A e. RR -> ( 0 <_ A <-> 0 <_ ( A / 2 ) ) )

Proof

Step Hyp Ref Expression
1 2re
 |-  2 e. RR
2 2pos
 |-  0 < 2
3 ge0div
 |-  ( ( A e. RR /\ 2 e. RR /\ 0 < 2 ) -> ( 0 <_ A <-> 0 <_ ( A / 2 ) ) )
4 1 2 3 mp3an23
 |-  ( A e. RR -> ( 0 <_ A <-> 0 <_ ( A / 2 ) ) )