Metamath Proof Explorer


Theorem halfpire

Description: _pi / 2 is real. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Assertion halfpire
|- ( _pi / 2 ) e. RR

Proof

Step Hyp Ref Expression
1 pire
 |-  _pi e. RR
2 1 rehalfcli
 |-  ( _pi / 2 ) e. RR