| Step |
Hyp |
Ref |
Expression |
| 1 |
|
halfpos2 |
|- ( A e. RR -> ( 0 < A <-> 0 < ( A / 2 ) ) ) |
| 2 |
|
rehalfcl |
|- ( A e. RR -> ( A / 2 ) e. RR ) |
| 3 |
2 2
|
ltaddposd |
|- ( A e. RR -> ( 0 < ( A / 2 ) <-> ( A / 2 ) < ( ( A / 2 ) + ( A / 2 ) ) ) ) |
| 4 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 5 |
|
2halves |
|- ( A e. CC -> ( ( A / 2 ) + ( A / 2 ) ) = A ) |
| 6 |
4 5
|
syl |
|- ( A e. RR -> ( ( A / 2 ) + ( A / 2 ) ) = A ) |
| 7 |
6
|
breq2d |
|- ( A e. RR -> ( ( A / 2 ) < ( ( A / 2 ) + ( A / 2 ) ) <-> ( A / 2 ) < A ) ) |
| 8 |
1 3 7
|
3bitrd |
|- ( A e. RR -> ( 0 < A <-> ( A / 2 ) < A ) ) |