Metamath Proof Explorer


Theorem halfthird

Description: Half minus a third. (Contributed by Scott Fenton, 8-Jul-2015)

Ref Expression
Assertion halfthird
|- ( ( 1 / 2 ) - ( 1 / 3 ) ) = ( 1 / 6 )

Proof

Step Hyp Ref Expression
1 2cn
 |-  2 e. CC
2 3cn
 |-  3 e. CC
3 2ne0
 |-  2 =/= 0
4 3ne0
 |-  3 =/= 0
5 1 2 3 4 subreci
 |-  ( ( 1 / 2 ) - ( 1 / 3 ) ) = ( ( 3 - 2 ) / ( 2 x. 3 ) )
6 ax-1cn
 |-  1 e. CC
7 2p1e3
 |-  ( 2 + 1 ) = 3
8 2 1 6 7 subaddrii
 |-  ( 3 - 2 ) = 1
9 3t2e6
 |-  ( 3 x. 2 ) = 6
10 2 1 9 mulcomli
 |-  ( 2 x. 3 ) = 6
11 8 10 oveq12i
 |-  ( ( 3 - 2 ) / ( 2 x. 3 ) ) = ( 1 / 6 )
12 5 11 eqtri
 |-  ( ( 1 / 2 ) - ( 1 / 3 ) ) = ( 1 / 6 )