Step |
Hyp |
Ref |
Expression |
1 |
|
harcl |
|- ( har ` A ) e. On |
2 |
|
sdomdom |
|- ( x ~< ( har ` A ) -> x ~<_ ( har ` A ) ) |
3 |
|
ondomen |
|- ( ( ( har ` A ) e. On /\ x ~<_ ( har ` A ) ) -> x e. dom card ) |
4 |
1 2 3
|
sylancr |
|- ( x ~< ( har ` A ) -> x e. dom card ) |
5 |
|
onenon |
|- ( ( har ` A ) e. On -> ( har ` A ) e. dom card ) |
6 |
1 5
|
ax-mp |
|- ( har ` A ) e. dom card |
7 |
|
cardsdom2 |
|- ( ( x e. dom card /\ ( har ` A ) e. dom card ) -> ( ( card ` x ) e. ( card ` ( har ` A ) ) <-> x ~< ( har ` A ) ) ) |
8 |
4 6 7
|
sylancl |
|- ( x ~< ( har ` A ) -> ( ( card ` x ) e. ( card ` ( har ` A ) ) <-> x ~< ( har ` A ) ) ) |
9 |
8
|
ibir |
|- ( x ~< ( har ` A ) -> ( card ` x ) e. ( card ` ( har ` A ) ) ) |
10 |
|
harcard |
|- ( card ` ( har ` A ) ) = ( har ` A ) |
11 |
9 10
|
eleqtrdi |
|- ( x ~< ( har ` A ) -> ( card ` x ) e. ( har ` A ) ) |
12 |
|
elharval |
|- ( ( card ` x ) e. ( har ` A ) <-> ( ( card ` x ) e. On /\ ( card ` x ) ~<_ A ) ) |
13 |
12
|
simprbi |
|- ( ( card ` x ) e. ( har ` A ) -> ( card ` x ) ~<_ A ) |
14 |
11 13
|
syl |
|- ( x ~< ( har ` A ) -> ( card ` x ) ~<_ A ) |
15 |
|
cardid2 |
|- ( x e. dom card -> ( card ` x ) ~~ x ) |
16 |
|
domen1 |
|- ( ( card ` x ) ~~ x -> ( ( card ` x ) ~<_ A <-> x ~<_ A ) ) |
17 |
4 15 16
|
3syl |
|- ( x ~< ( har ` A ) -> ( ( card ` x ) ~<_ A <-> x ~<_ A ) ) |
18 |
14 17
|
mpbid |
|- ( x ~< ( har ` A ) -> x ~<_ A ) |
19 |
|
domnsym |
|- ( x ~<_ A -> -. A ~< x ) |
20 |
18 19
|
syl |
|- ( x ~< ( har ` A ) -> -. A ~< x ) |
21 |
20
|
con2i |
|- ( A ~< x -> -. x ~< ( har ` A ) ) |
22 |
|
sdomen2 |
|- ( ( har ` A ) ~~ ~P A -> ( x ~< ( har ` A ) <-> x ~< ~P A ) ) |
23 |
22
|
notbid |
|- ( ( har ` A ) ~~ ~P A -> ( -. x ~< ( har ` A ) <-> -. x ~< ~P A ) ) |
24 |
21 23
|
syl5ib |
|- ( ( har ` A ) ~~ ~P A -> ( A ~< x -> -. x ~< ~P A ) ) |
25 |
|
imnan |
|- ( ( A ~< x -> -. x ~< ~P A ) <-> -. ( A ~< x /\ x ~< ~P A ) ) |
26 |
24 25
|
sylib |
|- ( ( har ` A ) ~~ ~P A -> -. ( A ~< x /\ x ~< ~P A ) ) |
27 |
26
|
alrimiv |
|- ( ( har ` A ) ~~ ~P A -> A. x -. ( A ~< x /\ x ~< ~P A ) ) |
28 |
27
|
olcd |
|- ( ( har ` A ) ~~ ~P A -> ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) ) |
29 |
|
relen |
|- Rel ~~ |
30 |
29
|
brrelex2i |
|- ( ( har ` A ) ~~ ~P A -> ~P A e. _V ) |
31 |
|
pwexb |
|- ( A e. _V <-> ~P A e. _V ) |
32 |
30 31
|
sylibr |
|- ( ( har ` A ) ~~ ~P A -> A e. _V ) |
33 |
|
elgch |
|- ( A e. _V -> ( A e. GCH <-> ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) ) ) |
34 |
32 33
|
syl |
|- ( ( har ` A ) ~~ ~P A -> ( A e. GCH <-> ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) ) ) |
35 |
28 34
|
mpbird |
|- ( ( har ` A ) ~~ ~P A -> A e. GCH ) |