| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 |  |-  ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) | 
						
							| 2 |  | 0re |  |-  0 e. RR | 
						
							| 3 |  | emre |  |-  gamma e. RR | 
						
							| 4 |  | 2re |  |-  2 e. RR | 
						
							| 5 |  | ere |  |-  _e e. RR | 
						
							| 6 |  | egt2lt3 |  |-  ( 2 < _e /\ _e < 3 ) | 
						
							| 7 | 6 | simpli |  |-  2 < _e | 
						
							| 8 | 4 5 7 | ltleii |  |-  2 <_ _e | 
						
							| 9 |  | 2rp |  |-  2 e. RR+ | 
						
							| 10 |  | epr |  |-  _e e. RR+ | 
						
							| 11 |  | logleb |  |-  ( ( 2 e. RR+ /\ _e e. RR+ ) -> ( 2 <_ _e <-> ( log ` 2 ) <_ ( log ` _e ) ) ) | 
						
							| 12 | 9 10 11 | mp2an |  |-  ( 2 <_ _e <-> ( log ` 2 ) <_ ( log ` _e ) ) | 
						
							| 13 | 8 12 | mpbi |  |-  ( log ` 2 ) <_ ( log ` _e ) | 
						
							| 14 |  | loge |  |-  ( log ` _e ) = 1 | 
						
							| 15 | 13 14 | breqtri |  |-  ( log ` 2 ) <_ 1 | 
						
							| 16 |  | 1re |  |-  1 e. RR | 
						
							| 17 |  | relogcl |  |-  ( 2 e. RR+ -> ( log ` 2 ) e. RR ) | 
						
							| 18 | 9 17 | ax-mp |  |-  ( log ` 2 ) e. RR | 
						
							| 19 | 16 18 | subge0i |  |-  ( 0 <_ ( 1 - ( log ` 2 ) ) <-> ( log ` 2 ) <_ 1 ) | 
						
							| 20 | 15 19 | mpbir |  |-  0 <_ ( 1 - ( log ` 2 ) ) | 
						
							| 21 | 3 | leidi |  |-  gamma <_ gamma | 
						
							| 22 |  | iccss |  |-  ( ( ( 0 e. RR /\ gamma e. RR ) /\ ( 0 <_ ( 1 - ( log ` 2 ) ) /\ gamma <_ gamma ) ) -> ( ( 1 - ( log ` 2 ) ) [,] gamma ) C_ ( 0 [,] gamma ) ) | 
						
							| 23 | 2 3 20 21 22 | mp4an |  |-  ( ( 1 - ( log ` 2 ) ) [,] gamma ) C_ ( 0 [,] gamma ) | 
						
							| 24 |  | harmonicbnd2 |  |-  ( N e. NN -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) e. ( ( 1 - ( log ` 2 ) ) [,] gamma ) ) | 
						
							| 25 | 23 24 | sselid |  |-  ( N e. NN -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) e. ( 0 [,] gamma ) ) | 
						
							| 26 |  | oveq2 |  |-  ( N = 0 -> ( 1 ... N ) = ( 1 ... 0 ) ) | 
						
							| 27 |  | fz10 |  |-  ( 1 ... 0 ) = (/) | 
						
							| 28 | 26 27 | eqtrdi |  |-  ( N = 0 -> ( 1 ... N ) = (/) ) | 
						
							| 29 | 28 | sumeq1d |  |-  ( N = 0 -> sum_ m e. ( 1 ... N ) ( 1 / m ) = sum_ m e. (/) ( 1 / m ) ) | 
						
							| 30 |  | sum0 |  |-  sum_ m e. (/) ( 1 / m ) = 0 | 
						
							| 31 | 29 30 | eqtrdi |  |-  ( N = 0 -> sum_ m e. ( 1 ... N ) ( 1 / m ) = 0 ) | 
						
							| 32 |  | fv0p1e1 |  |-  ( N = 0 -> ( log ` ( N + 1 ) ) = ( log ` 1 ) ) | 
						
							| 33 |  | log1 |  |-  ( log ` 1 ) = 0 | 
						
							| 34 | 32 33 | eqtrdi |  |-  ( N = 0 -> ( log ` ( N + 1 ) ) = 0 ) | 
						
							| 35 | 31 34 | oveq12d |  |-  ( N = 0 -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) = ( 0 - 0 ) ) | 
						
							| 36 |  | 0m0e0 |  |-  ( 0 - 0 ) = 0 | 
						
							| 37 | 35 36 | eqtrdi |  |-  ( N = 0 -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) = 0 ) | 
						
							| 38 | 2 | leidi |  |-  0 <_ 0 | 
						
							| 39 |  | emgt0 |  |-  0 < gamma | 
						
							| 40 | 2 3 39 | ltleii |  |-  0 <_ gamma | 
						
							| 41 | 2 3 | elicc2i |  |-  ( 0 e. ( 0 [,] gamma ) <-> ( 0 e. RR /\ 0 <_ 0 /\ 0 <_ gamma ) ) | 
						
							| 42 | 2 38 40 41 | mpbir3an |  |-  0 e. ( 0 [,] gamma ) | 
						
							| 43 | 37 42 | eqeltrdi |  |-  ( N = 0 -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) e. ( 0 [,] gamma ) ) | 
						
							| 44 | 25 43 | jaoi |  |-  ( ( N e. NN \/ N = 0 ) -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) e. ( 0 [,] gamma ) ) | 
						
							| 45 | 1 44 | sylbi |  |-  ( N e. NN0 -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) e. ( 0 [,] gamma ) ) |