Step |
Hyp |
Ref |
Expression |
1 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
2 |
|
rprege0 |
|- ( A e. RR+ -> ( A e. RR /\ 0 <_ A ) ) |
3 |
|
flge0nn0 |
|- ( ( A e. RR /\ 0 <_ A ) -> ( |_ ` A ) e. NN0 ) |
4 |
2 3
|
syl |
|- ( A e. RR+ -> ( |_ ` A ) e. NN0 ) |
5 |
|
nn0p1nn |
|- ( ( |_ ` A ) e. NN0 -> ( ( |_ ` A ) + 1 ) e. NN ) |
6 |
4 5
|
syl |
|- ( A e. RR+ -> ( ( |_ ` A ) + 1 ) e. NN ) |
7 |
6
|
nnrpd |
|- ( A e. RR+ -> ( ( |_ ` A ) + 1 ) e. RR+ ) |
8 |
|
relogcl |
|- ( ( ( |_ ` A ) + 1 ) e. RR+ -> ( log ` ( ( |_ ` A ) + 1 ) ) e. RR ) |
9 |
7 8
|
syl |
|- ( A e. RR+ -> ( log ` ( ( |_ ` A ) + 1 ) ) e. RR ) |
10 |
|
fzfid |
|- ( A e. RR+ -> ( 1 ... ( |_ ` A ) ) e. Fin ) |
11 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` A ) ) -> m e. NN ) |
12 |
11
|
adantl |
|- ( ( A e. RR+ /\ m e. ( 1 ... ( |_ ` A ) ) ) -> m e. NN ) |
13 |
12
|
nnrecred |
|- ( ( A e. RR+ /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 / m ) e. RR ) |
14 |
10 13
|
fsumrecl |
|- ( A e. RR+ -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) e. RR ) |
15 |
|
rpre |
|- ( A e. RR+ -> A e. RR ) |
16 |
|
fllep1 |
|- ( A e. RR -> A <_ ( ( |_ ` A ) + 1 ) ) |
17 |
15 16
|
syl |
|- ( A e. RR+ -> A <_ ( ( |_ ` A ) + 1 ) ) |
18 |
|
id |
|- ( A e. RR+ -> A e. RR+ ) |
19 |
18 7
|
logled |
|- ( A e. RR+ -> ( A <_ ( ( |_ ` A ) + 1 ) <-> ( log ` A ) <_ ( log ` ( ( |_ ` A ) + 1 ) ) ) ) |
20 |
17 19
|
mpbid |
|- ( A e. RR+ -> ( log ` A ) <_ ( log ` ( ( |_ ` A ) + 1 ) ) ) |
21 |
|
harmonicbnd3 |
|- ( ( |_ ` A ) e. NN0 -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. ( 0 [,] gamma ) ) |
22 |
4 21
|
syl |
|- ( A e. RR+ -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. ( 0 [,] gamma ) ) |
23 |
|
0re |
|- 0 e. RR |
24 |
|
emre |
|- gamma e. RR |
25 |
23 24
|
elicc2i |
|- ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. ( 0 [,] gamma ) <-> ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. RR /\ 0 <_ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) /\ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) <_ gamma ) ) |
26 |
25
|
simp2bi |
|- ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. ( 0 [,] gamma ) -> 0 <_ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) ) |
27 |
22 26
|
syl |
|- ( A e. RR+ -> 0 <_ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) ) |
28 |
14 9
|
subge0d |
|- ( A e. RR+ -> ( 0 <_ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) <-> ( log ` ( ( |_ ` A ) + 1 ) ) <_ sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) ) ) |
29 |
27 28
|
mpbid |
|- ( A e. RR+ -> ( log ` ( ( |_ ` A ) + 1 ) ) <_ sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) ) |
30 |
1 9 14 20 29
|
letrd |
|- ( A e. RR+ -> ( log ` A ) <_ sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) ) |