| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relogcl |  |-  ( A e. RR+ -> ( log ` A ) e. RR ) | 
						
							| 2 |  | rprege0 |  |-  ( A e. RR+ -> ( A e. RR /\ 0 <_ A ) ) | 
						
							| 3 |  | flge0nn0 |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( |_ ` A ) e. NN0 ) | 
						
							| 4 | 2 3 | syl |  |-  ( A e. RR+ -> ( |_ ` A ) e. NN0 ) | 
						
							| 5 |  | nn0p1nn |  |-  ( ( |_ ` A ) e. NN0 -> ( ( |_ ` A ) + 1 ) e. NN ) | 
						
							| 6 | 4 5 | syl |  |-  ( A e. RR+ -> ( ( |_ ` A ) + 1 ) e. NN ) | 
						
							| 7 | 6 | nnrpd |  |-  ( A e. RR+ -> ( ( |_ ` A ) + 1 ) e. RR+ ) | 
						
							| 8 |  | relogcl |  |-  ( ( ( |_ ` A ) + 1 ) e. RR+ -> ( log ` ( ( |_ ` A ) + 1 ) ) e. RR ) | 
						
							| 9 | 7 8 | syl |  |-  ( A e. RR+ -> ( log ` ( ( |_ ` A ) + 1 ) ) e. RR ) | 
						
							| 10 |  | fzfid |  |-  ( A e. RR+ -> ( 1 ... ( |_ ` A ) ) e. Fin ) | 
						
							| 11 |  | elfznn |  |-  ( m e. ( 1 ... ( |_ ` A ) ) -> m e. NN ) | 
						
							| 12 | 11 | adantl |  |-  ( ( A e. RR+ /\ m e. ( 1 ... ( |_ ` A ) ) ) -> m e. NN ) | 
						
							| 13 | 12 | nnrecred |  |-  ( ( A e. RR+ /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 / m ) e. RR ) | 
						
							| 14 | 10 13 | fsumrecl |  |-  ( A e. RR+ -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) e. RR ) | 
						
							| 15 |  | rpre |  |-  ( A e. RR+ -> A e. RR ) | 
						
							| 16 |  | fllep1 |  |-  ( A e. RR -> A <_ ( ( |_ ` A ) + 1 ) ) | 
						
							| 17 | 15 16 | syl |  |-  ( A e. RR+ -> A <_ ( ( |_ ` A ) + 1 ) ) | 
						
							| 18 |  | id |  |-  ( A e. RR+ -> A e. RR+ ) | 
						
							| 19 | 18 7 | logled |  |-  ( A e. RR+ -> ( A <_ ( ( |_ ` A ) + 1 ) <-> ( log ` A ) <_ ( log ` ( ( |_ ` A ) + 1 ) ) ) ) | 
						
							| 20 | 17 19 | mpbid |  |-  ( A e. RR+ -> ( log ` A ) <_ ( log ` ( ( |_ ` A ) + 1 ) ) ) | 
						
							| 21 |  | harmonicbnd3 |  |-  ( ( |_ ` A ) e. NN0 -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. ( 0 [,] gamma ) ) | 
						
							| 22 | 4 21 | syl |  |-  ( A e. RR+ -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. ( 0 [,] gamma ) ) | 
						
							| 23 |  | 0re |  |-  0 e. RR | 
						
							| 24 |  | emre |  |-  gamma e. RR | 
						
							| 25 | 23 24 | elicc2i |  |-  ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. ( 0 [,] gamma ) <-> ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. RR /\ 0 <_ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) /\ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) <_ gamma ) ) | 
						
							| 26 | 25 | simp2bi |  |-  ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. ( 0 [,] gamma ) -> 0 <_ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) ) | 
						
							| 27 | 22 26 | syl |  |-  ( A e. RR+ -> 0 <_ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) ) | 
						
							| 28 | 14 9 | subge0d |  |-  ( A e. RR+ -> ( 0 <_ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) <-> ( log ` ( ( |_ ` A ) + 1 ) ) <_ sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) ) ) | 
						
							| 29 | 27 28 | mpbid |  |-  ( A e. RR+ -> ( log ` ( ( |_ ` A ) + 1 ) ) <_ sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) ) | 
						
							| 30 | 1 9 14 20 29 | letrd |  |-  ( A e. RR+ -> ( log ` A ) <_ sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) ) |