Metamath Proof Explorer


Theorem harndom

Description: The Hartogs number of a set does not inject into that set. (Contributed by Stefan O'Rear, 11-Feb-2015) (Revised by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion harndom
|- -. ( har ` X ) ~<_ X

Proof

Step Hyp Ref Expression
1 harcl
 |-  ( har ` X ) e. On
2 1 onirri
 |-  -. ( har ` X ) e. ( har ` X )
3 elharval
 |-  ( ( har ` X ) e. ( har ` X ) <-> ( ( har ` X ) e. On /\ ( har ` X ) ~<_ X ) )
4 1 3 mpbiran
 |-  ( ( har ` X ) e. ( har ` X ) <-> ( har ` X ) ~<_ X )
5 2 4 mtbi
 |-  -. ( har ` X ) ~<_ X