Step |
Hyp |
Ref |
Expression |
1 |
|
onelon |
|- ( ( z e. On /\ y e. z ) -> y e. On ) |
2 |
|
vex |
|- z e. _V |
3 |
|
onelss |
|- ( z e. On -> ( y e. z -> y C_ z ) ) |
4 |
3
|
imp |
|- ( ( z e. On /\ y e. z ) -> y C_ z ) |
5 |
|
ssdomg |
|- ( z e. _V -> ( y C_ z -> y ~<_ z ) ) |
6 |
2 4 5
|
mpsyl |
|- ( ( z e. On /\ y e. z ) -> y ~<_ z ) |
7 |
1 6
|
jca |
|- ( ( z e. On /\ y e. z ) -> ( y e. On /\ y ~<_ z ) ) |
8 |
|
domtr |
|- ( ( y ~<_ z /\ z ~<_ A ) -> y ~<_ A ) |
9 |
8
|
anim2i |
|- ( ( y e. On /\ ( y ~<_ z /\ z ~<_ A ) ) -> ( y e. On /\ y ~<_ A ) ) |
10 |
9
|
anassrs |
|- ( ( ( y e. On /\ y ~<_ z ) /\ z ~<_ A ) -> ( y e. On /\ y ~<_ A ) ) |
11 |
7 10
|
sylan |
|- ( ( ( z e. On /\ y e. z ) /\ z ~<_ A ) -> ( y e. On /\ y ~<_ A ) ) |
12 |
11
|
exp31 |
|- ( z e. On -> ( y e. z -> ( z ~<_ A -> ( y e. On /\ y ~<_ A ) ) ) ) |
13 |
12
|
com12 |
|- ( y e. z -> ( z e. On -> ( z ~<_ A -> ( y e. On /\ y ~<_ A ) ) ) ) |
14 |
13
|
impd |
|- ( y e. z -> ( ( z e. On /\ z ~<_ A ) -> ( y e. On /\ y ~<_ A ) ) ) |
15 |
|
breq1 |
|- ( x = z -> ( x ~<_ A <-> z ~<_ A ) ) |
16 |
15
|
elrab |
|- ( z e. { x e. On | x ~<_ A } <-> ( z e. On /\ z ~<_ A ) ) |
17 |
|
breq1 |
|- ( x = y -> ( x ~<_ A <-> y ~<_ A ) ) |
18 |
17
|
elrab |
|- ( y e. { x e. On | x ~<_ A } <-> ( y e. On /\ y ~<_ A ) ) |
19 |
14 16 18
|
3imtr4g |
|- ( y e. z -> ( z e. { x e. On | x ~<_ A } -> y e. { x e. On | x ~<_ A } ) ) |
20 |
19
|
imp |
|- ( ( y e. z /\ z e. { x e. On | x ~<_ A } ) -> y e. { x e. On | x ~<_ A } ) |
21 |
20
|
gen2 |
|- A. y A. z ( ( y e. z /\ z e. { x e. On | x ~<_ A } ) -> y e. { x e. On | x ~<_ A } ) |
22 |
|
dftr2 |
|- ( Tr { x e. On | x ~<_ A } <-> A. y A. z ( ( y e. z /\ z e. { x e. On | x ~<_ A } ) -> y e. { x e. On | x ~<_ A } ) ) |
23 |
21 22
|
mpbir |
|- Tr { x e. On | x ~<_ A } |
24 |
|
ssrab2 |
|- { x e. On | x ~<_ A } C_ On |
25 |
|
ordon |
|- Ord On |
26 |
|
trssord |
|- ( ( Tr { x e. On | x ~<_ A } /\ { x e. On | x ~<_ A } C_ On /\ Ord On ) -> Ord { x e. On | x ~<_ A } ) |
27 |
23 24 25 26
|
mp3an |
|- Ord { x e. On | x ~<_ A } |
28 |
|
eqid |
|- { <. r , y >. | ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } = { <. r , y >. | ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
29 |
|
eqid |
|- { <. s , t >. | E. w e. y E. z e. y ( ( s = ( g ` w ) /\ t = ( g ` z ) ) /\ w _E z ) } = { <. s , t >. | E. w e. y E. z e. y ( ( s = ( g ` w ) /\ t = ( g ` z ) ) /\ w _E z ) } |
30 |
28 29
|
hartogslem2 |
|- ( A e. V -> { x e. On | x ~<_ A } e. _V ) |
31 |
|
elong |
|- ( { x e. On | x ~<_ A } e. _V -> ( { x e. On | x ~<_ A } e. On <-> Ord { x e. On | x ~<_ A } ) ) |
32 |
30 31
|
syl |
|- ( A e. V -> ( { x e. On | x ~<_ A } e. On <-> Ord { x e. On | x ~<_ A } ) ) |
33 |
27 32
|
mpbiri |
|- ( A e. V -> { x e. On | x ~<_ A } e. On ) |