Metamath Proof Explorer


Theorem hartogslem2

Description: Lemma for hartogs . (Contributed by Mario Carneiro, 14-Jan-2013)

Ref Expression
Hypotheses hartogslem.2
|- F = { <. r , y >. | ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) }
hartogslem.3
|- R = { <. s , t >. | E. w e. y E. z e. y ( ( s = ( f ` w ) /\ t = ( f ` z ) ) /\ w _E z ) }
Assertion hartogslem2
|- ( A e. V -> { x e. On | x ~<_ A } e. _V )

Proof

Step Hyp Ref Expression
1 hartogslem.2
 |-  F = { <. r , y >. | ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) }
2 hartogslem.3
 |-  R = { <. s , t >. | E. w e. y E. z e. y ( ( s = ( f ` w ) /\ t = ( f ` z ) ) /\ w _E z ) }
3 1 2 hartogslem1
 |-  ( dom F C_ ~P ( A X. A ) /\ Fun F /\ ( A e. V -> ran F = { x e. On | x ~<_ A } ) )
4 3 simp3i
 |-  ( A e. V -> ran F = { x e. On | x ~<_ A } )
5 3 simp2i
 |-  Fun F
6 3 simp1i
 |-  dom F C_ ~P ( A X. A )
7 sqxpexg
 |-  ( A e. V -> ( A X. A ) e. _V )
8 7 pwexd
 |-  ( A e. V -> ~P ( A X. A ) e. _V )
9 ssexg
 |-  ( ( dom F C_ ~P ( A X. A ) /\ ~P ( A X. A ) e. _V ) -> dom F e. _V )
10 6 8 9 sylancr
 |-  ( A e. V -> dom F e. _V )
11 funex
 |-  ( ( Fun F /\ dom F e. _V ) -> F e. _V )
12 5 10 11 sylancr
 |-  ( A e. V -> F e. _V )
13 rnexg
 |-  ( F e. _V -> ran F e. _V )
14 12 13 syl
 |-  ( A e. V -> ran F e. _V )
15 4 14 eqeltrrd
 |-  ( A e. V -> { x e. On | x ~<_ A } e. _V )