Step |
Hyp |
Ref |
Expression |
1 |
|
harval |
|- ( A e. dom card -> ( har ` A ) = { y e. On | y ~<_ A } ) |
2 |
1
|
adantr |
|- ( ( A e. dom card /\ ( x e. On /\ A ~< x ) ) -> ( har ` A ) = { y e. On | y ~<_ A } ) |
3 |
|
sdomel |
|- ( ( y e. On /\ x e. On ) -> ( y ~< x -> y e. x ) ) |
4 |
|
domsdomtr |
|- ( ( y ~<_ A /\ A ~< x ) -> y ~< x ) |
5 |
3 4
|
impel |
|- ( ( ( y e. On /\ x e. On ) /\ ( y ~<_ A /\ A ~< x ) ) -> y e. x ) |
6 |
5
|
an4s |
|- ( ( ( y e. On /\ y ~<_ A ) /\ ( x e. On /\ A ~< x ) ) -> y e. x ) |
7 |
6
|
ancoms |
|- ( ( ( x e. On /\ A ~< x ) /\ ( y e. On /\ y ~<_ A ) ) -> y e. x ) |
8 |
7
|
3impb |
|- ( ( ( x e. On /\ A ~< x ) /\ y e. On /\ y ~<_ A ) -> y e. x ) |
9 |
8
|
rabssdv |
|- ( ( x e. On /\ A ~< x ) -> { y e. On | y ~<_ A } C_ x ) |
10 |
9
|
adantl |
|- ( ( A e. dom card /\ ( x e. On /\ A ~< x ) ) -> { y e. On | y ~<_ A } C_ x ) |
11 |
2 10
|
eqsstrd |
|- ( ( A e. dom card /\ ( x e. On /\ A ~< x ) ) -> ( har ` A ) C_ x ) |
12 |
11
|
expr |
|- ( ( A e. dom card /\ x e. On ) -> ( A ~< x -> ( har ` A ) C_ x ) ) |
13 |
12
|
ralrimiva |
|- ( A e. dom card -> A. x e. On ( A ~< x -> ( har ` A ) C_ x ) ) |
14 |
|
ssintrab |
|- ( ( har ` A ) C_ |^| { x e. On | A ~< x } <-> A. x e. On ( A ~< x -> ( har ` A ) C_ x ) ) |
15 |
13 14
|
sylibr |
|- ( A e. dom card -> ( har ` A ) C_ |^| { x e. On | A ~< x } ) |
16 |
|
breq2 |
|- ( x = ( har ` A ) -> ( A ~< x <-> A ~< ( har ` A ) ) ) |
17 |
|
harcl |
|- ( har ` A ) e. On |
18 |
17
|
a1i |
|- ( A e. dom card -> ( har ` A ) e. On ) |
19 |
|
harsdom |
|- ( A e. dom card -> A ~< ( har ` A ) ) |
20 |
16 18 19
|
elrabd |
|- ( A e. dom card -> ( har ` A ) e. { x e. On | A ~< x } ) |
21 |
|
intss1 |
|- ( ( har ` A ) e. { x e. On | A ~< x } -> |^| { x e. On | A ~< x } C_ ( har ` A ) ) |
22 |
20 21
|
syl |
|- ( A e. dom card -> |^| { x e. On | A ~< x } C_ ( har ` A ) ) |
23 |
15 22
|
eqssd |
|- ( A e. dom card -> ( har ` A ) = |^| { x e. On | A ~< x } ) |