Metamath Proof Explorer


Theorem harval2

Description: An alternate expression for the Hartogs number of a well-orderable set. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion harval2
|- ( A e. dom card -> ( har ` A ) = |^| { x e. On | A ~< x } )

Proof

Step Hyp Ref Expression
1 harval
 |-  ( A e. dom card -> ( har ` A ) = { y e. On | y ~<_ A } )
2 1 adantr
 |-  ( ( A e. dom card /\ ( x e. On /\ A ~< x ) ) -> ( har ` A ) = { y e. On | y ~<_ A } )
3 sdomel
 |-  ( ( y e. On /\ x e. On ) -> ( y ~< x -> y e. x ) )
4 domsdomtr
 |-  ( ( y ~<_ A /\ A ~< x ) -> y ~< x )
5 3 4 impel
 |-  ( ( ( y e. On /\ x e. On ) /\ ( y ~<_ A /\ A ~< x ) ) -> y e. x )
6 5 an4s
 |-  ( ( ( y e. On /\ y ~<_ A ) /\ ( x e. On /\ A ~< x ) ) -> y e. x )
7 6 ancoms
 |-  ( ( ( x e. On /\ A ~< x ) /\ ( y e. On /\ y ~<_ A ) ) -> y e. x )
8 7 3impb
 |-  ( ( ( x e. On /\ A ~< x ) /\ y e. On /\ y ~<_ A ) -> y e. x )
9 8 rabssdv
 |-  ( ( x e. On /\ A ~< x ) -> { y e. On | y ~<_ A } C_ x )
10 9 adantl
 |-  ( ( A e. dom card /\ ( x e. On /\ A ~< x ) ) -> { y e. On | y ~<_ A } C_ x )
11 2 10 eqsstrd
 |-  ( ( A e. dom card /\ ( x e. On /\ A ~< x ) ) -> ( har ` A ) C_ x )
12 11 expr
 |-  ( ( A e. dom card /\ x e. On ) -> ( A ~< x -> ( har ` A ) C_ x ) )
13 12 ralrimiva
 |-  ( A e. dom card -> A. x e. On ( A ~< x -> ( har ` A ) C_ x ) )
14 ssintrab
 |-  ( ( har ` A ) C_ |^| { x e. On | A ~< x } <-> A. x e. On ( A ~< x -> ( har ` A ) C_ x ) )
15 13 14 sylibr
 |-  ( A e. dom card -> ( har ` A ) C_ |^| { x e. On | A ~< x } )
16 breq2
 |-  ( x = ( har ` A ) -> ( A ~< x <-> A ~< ( har ` A ) ) )
17 harcl
 |-  ( har ` A ) e. On
18 17 a1i
 |-  ( A e. dom card -> ( har ` A ) e. On )
19 harsdom
 |-  ( A e. dom card -> A ~< ( har ` A ) )
20 16 18 19 elrabd
 |-  ( A e. dom card -> ( har ` A ) e. { x e. On | A ~< x } )
21 intss1
 |-  ( ( har ` A ) e. { x e. On | A ~< x } -> |^| { x e. On | A ~< x } C_ ( har ` A ) )
22 20 21 syl
 |-  ( A e. dom card -> |^| { x e. On | A ~< x } C_ ( har ` A ) )
23 15 22 eqssd
 |-  ( A e. dom card -> ( har ` A ) = |^| { x e. On | A ~< x } )