Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } = { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
2 |
|
eqid |
|- { <. s , t >. | E. w e. y E. z e. y ( ( s = ( f ` w ) /\ t = ( f ` z ) ) /\ w _E z ) } = { <. s , t >. | E. w e. y E. z e. y ( ( s = ( f ` w ) /\ t = ( f ` z ) ) /\ w _E z ) } |
3 |
1 2
|
hartogslem1 |
|- ( dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } C_ ~P ( X X. X ) /\ Fun { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } /\ ( X e. V -> ran { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } = { x e. On | x ~<_ X } ) ) |
4 |
3
|
simp2i |
|- Fun { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
5 |
3
|
simp1i |
|- dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } C_ ~P ( X X. X ) |
6 |
|
sqxpexg |
|- ( X e. V -> ( X X. X ) e. _V ) |
7 |
6
|
pwexd |
|- ( X e. V -> ~P ( X X. X ) e. _V ) |
8 |
|
ssexg |
|- ( ( dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } C_ ~P ( X X. X ) /\ ~P ( X X. X ) e. _V ) -> dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } e. _V ) |
9 |
5 7 8
|
sylancr |
|- ( X e. V -> dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } e. _V ) |
10 |
|
funex |
|- ( ( Fun { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } /\ dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } e. _V ) -> { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } e. _V ) |
11 |
4 9 10
|
sylancr |
|- ( X e. V -> { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } e. _V ) |
12 |
|
funfn |
|- ( Fun { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } <-> { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } Fn dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ) |
13 |
4 12
|
mpbi |
|- { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } Fn dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
14 |
13
|
a1i |
|- ( X e. V -> { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } Fn dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ) |
15 |
3
|
simp3i |
|- ( X e. V -> ran { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } = { x e. On | x ~<_ X } ) |
16 |
|
harval |
|- ( X e. V -> ( har ` X ) = { x e. On | x ~<_ X } ) |
17 |
15 16
|
eqtr4d |
|- ( X e. V -> ran { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } = ( har ` X ) ) |
18 |
|
df-fo |
|- ( { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } : dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } -onto-> ( har ` X ) <-> ( { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } Fn dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } /\ ran { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } = ( har ` X ) ) ) |
19 |
14 17 18
|
sylanbrc |
|- ( X e. V -> { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } : dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } -onto-> ( har ` X ) ) |
20 |
|
fowdom |
|- ( ( { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } e. _V /\ { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } : dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } -onto-> ( har ` X ) ) -> ( har ` X ) ~<_* dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ) |
21 |
11 19 20
|
syl2anc |
|- ( X e. V -> ( har ` X ) ~<_* dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ) |
22 |
|
ssdomg |
|- ( ~P ( X X. X ) e. _V -> ( dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } C_ ~P ( X X. X ) -> dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ~<_ ~P ( X X. X ) ) ) |
23 |
7 5 22
|
mpisyl |
|- ( X e. V -> dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ~<_ ~P ( X X. X ) ) |
24 |
|
domwdom |
|- ( dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ~<_ ~P ( X X. X ) -> dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ~<_* ~P ( X X. X ) ) |
25 |
23 24
|
syl |
|- ( X e. V -> dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ~<_* ~P ( X X. X ) ) |
26 |
|
wdomtr |
|- ( ( ( har ` X ) ~<_* dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } /\ dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ~<_* ~P ( X X. X ) ) -> ( har ` X ) ~<_* ~P ( X X. X ) ) |
27 |
21 25 26
|
syl2anc |
|- ( X e. V -> ( har ` X ) ~<_* ~P ( X X. X ) ) |