Step |
Hyp |
Ref |
Expression |
1 |
|
hash1elsn.1 |
|- ( ph -> ( # ` A ) = 1 ) |
2 |
|
hash1elsn.2 |
|- ( ph -> B e. A ) |
3 |
|
hash1elsn.3 |
|- ( ph -> A e. V ) |
4 |
|
hashen1 |
|- ( A e. V -> ( ( # ` A ) = 1 <-> A ~~ 1o ) ) |
5 |
3 4
|
syl |
|- ( ph -> ( ( # ` A ) = 1 <-> A ~~ 1o ) ) |
6 |
1 5
|
mpbid |
|- ( ph -> A ~~ 1o ) |
7 |
|
en1 |
|- ( A ~~ 1o <-> E. x A = { x } ) |
8 |
6 7
|
sylib |
|- ( ph -> E. x A = { x } ) |
9 |
|
simpr |
|- ( ( ph /\ A = { x } ) -> A = { x } ) |
10 |
2
|
adantr |
|- ( ( ph /\ A = { x } ) -> B e. A ) |
11 |
10 9
|
eleqtrd |
|- ( ( ph /\ A = { x } ) -> B e. { x } ) |
12 |
|
elsni |
|- ( B e. { x } -> B = x ) |
13 |
11 12
|
syl |
|- ( ( ph /\ A = { x } ) -> B = x ) |
14 |
13
|
sneqd |
|- ( ( ph /\ A = { x } ) -> { B } = { x } ) |
15 |
9 14
|
eqtr4d |
|- ( ( ph /\ A = { x } ) -> A = { B } ) |
16 |
8 15
|
exlimddv |
|- ( ph -> A = { B } ) |