Metamath Proof Explorer


Theorem hash1elsn

Description: A set of size 1 with a known element is the singleton of that element. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses hash1elsn.1
|- ( ph -> ( # ` A ) = 1 )
hash1elsn.2
|- ( ph -> B e. A )
hash1elsn.3
|- ( ph -> A e. V )
Assertion hash1elsn
|- ( ph -> A = { B } )

Proof

Step Hyp Ref Expression
1 hash1elsn.1
 |-  ( ph -> ( # ` A ) = 1 )
2 hash1elsn.2
 |-  ( ph -> B e. A )
3 hash1elsn.3
 |-  ( ph -> A e. V )
4 hashen1
 |-  ( A e. V -> ( ( # ` A ) = 1 <-> A ~~ 1o ) )
5 3 4 syl
 |-  ( ph -> ( ( # ` A ) = 1 <-> A ~~ 1o ) )
6 1 5 mpbid
 |-  ( ph -> A ~~ 1o )
7 en1
 |-  ( A ~~ 1o <-> E. x A = { x } )
8 6 7 sylib
 |-  ( ph -> E. x A = { x } )
9 simpr
 |-  ( ( ph /\ A = { x } ) -> A = { x } )
10 2 adantr
 |-  ( ( ph /\ A = { x } ) -> B e. A )
11 10 9 eleqtrd
 |-  ( ( ph /\ A = { x } ) -> B e. { x } )
12 elsni
 |-  ( B e. { x } -> B = x )
13 11 12 syl
 |-  ( ( ph /\ A = { x } ) -> B = x )
14 13 sneqd
 |-  ( ( ph /\ A = { x } ) -> { B } = { x } )
15 9 14 eqtr4d
 |-  ( ( ph /\ A = { x } ) -> A = { B } )
16 8 15 exlimddv
 |-  ( ph -> A = { B } )