| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hash1elsn.1 |
|- ( ph -> ( # ` A ) = 1 ) |
| 2 |
|
hash1elsn.2 |
|- ( ph -> B e. A ) |
| 3 |
|
hash1elsn.3 |
|- ( ph -> A e. V ) |
| 4 |
|
hashen1 |
|- ( A e. V -> ( ( # ` A ) = 1 <-> A ~~ 1o ) ) |
| 5 |
3 4
|
syl |
|- ( ph -> ( ( # ` A ) = 1 <-> A ~~ 1o ) ) |
| 6 |
1 5
|
mpbid |
|- ( ph -> A ~~ 1o ) |
| 7 |
|
en1 |
|- ( A ~~ 1o <-> E. x A = { x } ) |
| 8 |
6 7
|
sylib |
|- ( ph -> E. x A = { x } ) |
| 9 |
|
simpr |
|- ( ( ph /\ A = { x } ) -> A = { x } ) |
| 10 |
2
|
adantr |
|- ( ( ph /\ A = { x } ) -> B e. A ) |
| 11 |
10 9
|
eleqtrd |
|- ( ( ph /\ A = { x } ) -> B e. { x } ) |
| 12 |
|
elsni |
|- ( B e. { x } -> B = x ) |
| 13 |
11 12
|
syl |
|- ( ( ph /\ A = { x } ) -> B = x ) |
| 14 |
13
|
sneqd |
|- ( ( ph /\ A = { x } ) -> { B } = { x } ) |
| 15 |
9 14
|
eqtr4d |
|- ( ( ph /\ A = { x } ) -> A = { B } ) |
| 16 |
8 15
|
exlimddv |
|- ( ph -> A = { B } ) |