| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hash2prde |  |-  ( ( V e. W /\ ( # ` V ) = 2 ) -> E. a E. b ( a =/= b /\ V = { a , b } ) ) | 
						
							| 2 | 1 | ex |  |-  ( V e. W -> ( ( # ` V ) = 2 -> E. a E. b ( a =/= b /\ V = { a , b } ) ) ) | 
						
							| 3 |  | hashprg |  |-  ( ( a e. _V /\ b e. _V ) -> ( a =/= b <-> ( # ` { a , b } ) = 2 ) ) | 
						
							| 4 | 3 | el2v |  |-  ( a =/= b <-> ( # ` { a , b } ) = 2 ) | 
						
							| 5 | 4 | a1i |  |-  ( V = { a , b } -> ( a =/= b <-> ( # ` { a , b } ) = 2 ) ) | 
						
							| 6 | 5 | biimpd |  |-  ( V = { a , b } -> ( a =/= b -> ( # ` { a , b } ) = 2 ) ) | 
						
							| 7 |  | fveqeq2 |  |-  ( V = { a , b } -> ( ( # ` V ) = 2 <-> ( # ` { a , b } ) = 2 ) ) | 
						
							| 8 | 6 7 | sylibrd |  |-  ( V = { a , b } -> ( a =/= b -> ( # ` V ) = 2 ) ) | 
						
							| 9 | 8 | impcom |  |-  ( ( a =/= b /\ V = { a , b } ) -> ( # ` V ) = 2 ) | 
						
							| 10 | 9 | a1i |  |-  ( V e. W -> ( ( a =/= b /\ V = { a , b } ) -> ( # ` V ) = 2 ) ) | 
						
							| 11 | 10 | exlimdvv |  |-  ( V e. W -> ( E. a E. b ( a =/= b /\ V = { a , b } ) -> ( # ` V ) = 2 ) ) | 
						
							| 12 | 2 11 | impbid |  |-  ( V e. W -> ( ( # ` V ) = 2 <-> E. a E. b ( a =/= b /\ V = { a , b } ) ) ) |