| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hash2iun1dif1.a |  |-  ( ph -> A e. Fin ) | 
						
							| 2 |  | hash2iun1dif1.b |  |-  B = ( A \ { x } ) | 
						
							| 3 |  | hash2iun1dif1.c |  |-  ( ( ph /\ x e. A /\ y e. B ) -> C e. Fin ) | 
						
							| 4 |  | hash2iun1dif1.da |  |-  ( ph -> Disj_ x e. A U_ y e. B C ) | 
						
							| 5 |  | hash2iun1dif1.db |  |-  ( ( ph /\ x e. A ) -> Disj_ y e. B C ) | 
						
							| 6 |  | hash2iun1dif1.1 |  |-  ( ( ph /\ x e. A /\ y e. B ) -> ( # ` C ) = 1 ) | 
						
							| 7 |  | diffi |  |-  ( A e. Fin -> ( A \ { x } ) e. Fin ) | 
						
							| 8 | 1 7 | syl |  |-  ( ph -> ( A \ { x } ) e. Fin ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ph /\ x e. A ) -> ( A \ { x } ) e. Fin ) | 
						
							| 10 | 2 9 | eqeltrid |  |-  ( ( ph /\ x e. A ) -> B e. Fin ) | 
						
							| 11 | 1 10 3 4 5 | hash2iun |  |-  ( ph -> ( # ` U_ x e. A U_ y e. B C ) = sum_ x e. A sum_ y e. B ( # ` C ) ) | 
						
							| 12 | 6 | 2sumeq2dv |  |-  ( ph -> sum_ x e. A sum_ y e. B ( # ` C ) = sum_ x e. A sum_ y e. B 1 ) | 
						
							| 13 |  | 1cnd |  |-  ( ( ph /\ x e. A ) -> 1 e. CC ) | 
						
							| 14 |  | fsumconst |  |-  ( ( B e. Fin /\ 1 e. CC ) -> sum_ y e. B 1 = ( ( # ` B ) x. 1 ) ) | 
						
							| 15 | 10 13 14 | syl2anc |  |-  ( ( ph /\ x e. A ) -> sum_ y e. B 1 = ( ( # ` B ) x. 1 ) ) | 
						
							| 16 | 15 | sumeq2dv |  |-  ( ph -> sum_ x e. A sum_ y e. B 1 = sum_ x e. A ( ( # ` B ) x. 1 ) ) | 
						
							| 17 | 2 | a1i |  |-  ( ( ph /\ x e. A ) -> B = ( A \ { x } ) ) | 
						
							| 18 | 17 | fveq2d |  |-  ( ( ph /\ x e. A ) -> ( # ` B ) = ( # ` ( A \ { x } ) ) ) | 
						
							| 19 |  | hashdifsn |  |-  ( ( A e. Fin /\ x e. A ) -> ( # ` ( A \ { x } ) ) = ( ( # ` A ) - 1 ) ) | 
						
							| 20 | 1 19 | sylan |  |-  ( ( ph /\ x e. A ) -> ( # ` ( A \ { x } ) ) = ( ( # ` A ) - 1 ) ) | 
						
							| 21 | 18 20 | eqtrd |  |-  ( ( ph /\ x e. A ) -> ( # ` B ) = ( ( # ` A ) - 1 ) ) | 
						
							| 22 | 21 | oveq1d |  |-  ( ( ph /\ x e. A ) -> ( ( # ` B ) x. 1 ) = ( ( ( # ` A ) - 1 ) x. 1 ) ) | 
						
							| 23 | 22 | sumeq2dv |  |-  ( ph -> sum_ x e. A ( ( # ` B ) x. 1 ) = sum_ x e. A ( ( ( # ` A ) - 1 ) x. 1 ) ) | 
						
							| 24 |  | hashcl |  |-  ( A e. Fin -> ( # ` A ) e. NN0 ) | 
						
							| 25 | 1 24 | syl |  |-  ( ph -> ( # ` A ) e. NN0 ) | 
						
							| 26 | 25 | nn0cnd |  |-  ( ph -> ( # ` A ) e. CC ) | 
						
							| 27 |  | peano2cnm |  |-  ( ( # ` A ) e. CC -> ( ( # ` A ) - 1 ) e. CC ) | 
						
							| 28 | 26 27 | syl |  |-  ( ph -> ( ( # ` A ) - 1 ) e. CC ) | 
						
							| 29 | 28 | mulridd |  |-  ( ph -> ( ( ( # ` A ) - 1 ) x. 1 ) = ( ( # ` A ) - 1 ) ) | 
						
							| 30 | 29 | sumeq2sdv |  |-  ( ph -> sum_ x e. A ( ( ( # ` A ) - 1 ) x. 1 ) = sum_ x e. A ( ( # ` A ) - 1 ) ) | 
						
							| 31 |  | fsumconst |  |-  ( ( A e. Fin /\ ( ( # ` A ) - 1 ) e. CC ) -> sum_ x e. A ( ( # ` A ) - 1 ) = ( ( # ` A ) x. ( ( # ` A ) - 1 ) ) ) | 
						
							| 32 | 1 28 31 | syl2anc |  |-  ( ph -> sum_ x e. A ( ( # ` A ) - 1 ) = ( ( # ` A ) x. ( ( # ` A ) - 1 ) ) ) | 
						
							| 33 | 30 32 | eqtrd |  |-  ( ph -> sum_ x e. A ( ( ( # ` A ) - 1 ) x. 1 ) = ( ( # ` A ) x. ( ( # ` A ) - 1 ) ) ) | 
						
							| 34 | 16 23 33 | 3eqtrd |  |-  ( ph -> sum_ x e. A sum_ y e. B 1 = ( ( # ` A ) x. ( ( # ` A ) - 1 ) ) ) | 
						
							| 35 | 11 12 34 | 3eqtrd |  |-  ( ph -> ( # ` U_ x e. A U_ y e. B C ) = ( ( # ` A ) x. ( ( # ` A ) - 1 ) ) ) |