| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 2 |  | hashvnfin |  |-  ( ( V e. W /\ 2 e. NN0 ) -> ( ( # ` V ) = 2 -> V e. Fin ) ) | 
						
							| 3 | 1 2 | mpan2 |  |-  ( V e. W -> ( ( # ` V ) = 2 -> V e. Fin ) ) | 
						
							| 4 | 3 | imp |  |-  ( ( V e. W /\ ( # ` V ) = 2 ) -> V e. Fin ) | 
						
							| 5 |  | hash2 |  |-  ( # ` 2o ) = 2 | 
						
							| 6 | 5 | eqcomi |  |-  2 = ( # ` 2o ) | 
						
							| 7 | 6 | a1i |  |-  ( V e. Fin -> 2 = ( # ` 2o ) ) | 
						
							| 8 | 7 | eqeq2d |  |-  ( V e. Fin -> ( ( # ` V ) = 2 <-> ( # ` V ) = ( # ` 2o ) ) ) | 
						
							| 9 |  | 2onn |  |-  2o e. _om | 
						
							| 10 |  | nnfi |  |-  ( 2o e. _om -> 2o e. Fin ) | 
						
							| 11 | 9 10 | ax-mp |  |-  2o e. Fin | 
						
							| 12 |  | hashen |  |-  ( ( V e. Fin /\ 2o e. Fin ) -> ( ( # ` V ) = ( # ` 2o ) <-> V ~~ 2o ) ) | 
						
							| 13 | 11 12 | mpan2 |  |-  ( V e. Fin -> ( ( # ` V ) = ( # ` 2o ) <-> V ~~ 2o ) ) | 
						
							| 14 | 13 | biimpd |  |-  ( V e. Fin -> ( ( # ` V ) = ( # ` 2o ) -> V ~~ 2o ) ) | 
						
							| 15 | 8 14 | sylbid |  |-  ( V e. Fin -> ( ( # ` V ) = 2 -> V ~~ 2o ) ) | 
						
							| 16 | 15 | adantld |  |-  ( V e. Fin -> ( ( V e. W /\ ( # ` V ) = 2 ) -> V ~~ 2o ) ) | 
						
							| 17 | 4 16 | mpcom |  |-  ( ( V e. W /\ ( # ` V ) = 2 ) -> V ~~ 2o ) | 
						
							| 18 |  | en2 |  |-  ( V ~~ 2o -> E. a E. b V = { a , b } ) | 
						
							| 19 | 17 18 | syl |  |-  ( ( V e. W /\ ( # ` V ) = 2 ) -> E. a E. b V = { a , b } ) |