Step |
Hyp |
Ref |
Expression |
1 |
|
hash2pr |
|- ( ( V e. W /\ ( # ` V ) = 2 ) -> E. a E. b V = { a , b } ) |
2 |
|
equid |
|- b = b |
3 |
|
vex |
|- a e. _V |
4 |
|
vex |
|- b e. _V |
5 |
3 4
|
preqsn |
|- ( { a , b } = { b } <-> ( a = b /\ b = b ) ) |
6 |
|
eqeq2 |
|- ( { a , b } = { b } -> ( V = { a , b } <-> V = { b } ) ) |
7 |
|
fveq2 |
|- ( V = { b } -> ( # ` V ) = ( # ` { b } ) ) |
8 |
|
hashsng |
|- ( b e. _V -> ( # ` { b } ) = 1 ) |
9 |
8
|
elv |
|- ( # ` { b } ) = 1 |
10 |
7 9
|
eqtrdi |
|- ( V = { b } -> ( # ` V ) = 1 ) |
11 |
|
eqeq1 |
|- ( ( # ` V ) = 2 -> ( ( # ` V ) = 1 <-> 2 = 1 ) ) |
12 |
|
1ne2 |
|- 1 =/= 2 |
13 |
|
df-ne |
|- ( 1 =/= 2 <-> -. 1 = 2 ) |
14 |
|
pm2.21 |
|- ( -. 1 = 2 -> ( 1 = 2 -> a =/= b ) ) |
15 |
13 14
|
sylbi |
|- ( 1 =/= 2 -> ( 1 = 2 -> a =/= b ) ) |
16 |
12 15
|
ax-mp |
|- ( 1 = 2 -> a =/= b ) |
17 |
16
|
eqcoms |
|- ( 2 = 1 -> a =/= b ) |
18 |
11 17
|
syl6bi |
|- ( ( # ` V ) = 2 -> ( ( # ` V ) = 1 -> a =/= b ) ) |
19 |
18
|
adantl |
|- ( ( V e. W /\ ( # ` V ) = 2 ) -> ( ( # ` V ) = 1 -> a =/= b ) ) |
20 |
10 19
|
syl5com |
|- ( V = { b } -> ( ( V e. W /\ ( # ` V ) = 2 ) -> a =/= b ) ) |
21 |
6 20
|
syl6bi |
|- ( { a , b } = { b } -> ( V = { a , b } -> ( ( V e. W /\ ( # ` V ) = 2 ) -> a =/= b ) ) ) |
22 |
21
|
impcomd |
|- ( { a , b } = { b } -> ( ( ( V e. W /\ ( # ` V ) = 2 ) /\ V = { a , b } ) -> a =/= b ) ) |
23 |
5 22
|
sylbir |
|- ( ( a = b /\ b = b ) -> ( ( ( V e. W /\ ( # ` V ) = 2 ) /\ V = { a , b } ) -> a =/= b ) ) |
24 |
2 23
|
mpan2 |
|- ( a = b -> ( ( ( V e. W /\ ( # ` V ) = 2 ) /\ V = { a , b } ) -> a =/= b ) ) |
25 |
|
ax-1 |
|- ( a =/= b -> ( ( ( V e. W /\ ( # ` V ) = 2 ) /\ V = { a , b } ) -> a =/= b ) ) |
26 |
24 25
|
pm2.61ine |
|- ( ( ( V e. W /\ ( # ` V ) = 2 ) /\ V = { a , b } ) -> a =/= b ) |
27 |
|
simpr |
|- ( ( ( V e. W /\ ( # ` V ) = 2 ) /\ V = { a , b } ) -> V = { a , b } ) |
28 |
26 27
|
jca |
|- ( ( ( V e. W /\ ( # ` V ) = 2 ) /\ V = { a , b } ) -> ( a =/= b /\ V = { a , b } ) ) |
29 |
28
|
ex |
|- ( ( V e. W /\ ( # ` V ) = 2 ) -> ( V = { a , b } -> ( a =/= b /\ V = { a , b } ) ) ) |
30 |
29
|
2eximdv |
|- ( ( V e. W /\ ( # ` V ) = 2 ) -> ( E. a E. b V = { a , b } -> E. a E. b ( a =/= b /\ V = { a , b } ) ) ) |
31 |
1 30
|
mpd |
|- ( ( V e. W /\ ( # ` V ) = 2 ) -> E. a E. b ( a =/= b /\ V = { a , b } ) ) |