| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hash2pr |  |-  ( ( V e. W /\ ( # ` V ) = 2 ) -> E. a E. b V = { a , b } ) | 
						
							| 2 |  | equid |  |-  b = b | 
						
							| 3 |  | vex |  |-  a e. _V | 
						
							| 4 |  | vex |  |-  b e. _V | 
						
							| 5 | 3 4 | preqsn |  |-  ( { a , b } = { b } <-> ( a = b /\ b = b ) ) | 
						
							| 6 |  | eqeq2 |  |-  ( { a , b } = { b } -> ( V = { a , b } <-> V = { b } ) ) | 
						
							| 7 |  | fveq2 |  |-  ( V = { b } -> ( # ` V ) = ( # ` { b } ) ) | 
						
							| 8 |  | hashsng |  |-  ( b e. _V -> ( # ` { b } ) = 1 ) | 
						
							| 9 | 8 | elv |  |-  ( # ` { b } ) = 1 | 
						
							| 10 | 7 9 | eqtrdi |  |-  ( V = { b } -> ( # ` V ) = 1 ) | 
						
							| 11 |  | eqeq1 |  |-  ( ( # ` V ) = 2 -> ( ( # ` V ) = 1 <-> 2 = 1 ) ) | 
						
							| 12 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 13 |  | df-ne |  |-  ( 1 =/= 2 <-> -. 1 = 2 ) | 
						
							| 14 |  | pm2.21 |  |-  ( -. 1 = 2 -> ( 1 = 2 -> a =/= b ) ) | 
						
							| 15 | 13 14 | sylbi |  |-  ( 1 =/= 2 -> ( 1 = 2 -> a =/= b ) ) | 
						
							| 16 | 12 15 | ax-mp |  |-  ( 1 = 2 -> a =/= b ) | 
						
							| 17 | 16 | eqcoms |  |-  ( 2 = 1 -> a =/= b ) | 
						
							| 18 | 11 17 | biimtrdi |  |-  ( ( # ` V ) = 2 -> ( ( # ` V ) = 1 -> a =/= b ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( V e. W /\ ( # ` V ) = 2 ) -> ( ( # ` V ) = 1 -> a =/= b ) ) | 
						
							| 20 | 10 19 | syl5com |  |-  ( V = { b } -> ( ( V e. W /\ ( # ` V ) = 2 ) -> a =/= b ) ) | 
						
							| 21 | 6 20 | biimtrdi |  |-  ( { a , b } = { b } -> ( V = { a , b } -> ( ( V e. W /\ ( # ` V ) = 2 ) -> a =/= b ) ) ) | 
						
							| 22 | 21 | impcomd |  |-  ( { a , b } = { b } -> ( ( ( V e. W /\ ( # ` V ) = 2 ) /\ V = { a , b } ) -> a =/= b ) ) | 
						
							| 23 | 5 22 | sylbir |  |-  ( ( a = b /\ b = b ) -> ( ( ( V e. W /\ ( # ` V ) = 2 ) /\ V = { a , b } ) -> a =/= b ) ) | 
						
							| 24 | 2 23 | mpan2 |  |-  ( a = b -> ( ( ( V e. W /\ ( # ` V ) = 2 ) /\ V = { a , b } ) -> a =/= b ) ) | 
						
							| 25 |  | ax-1 |  |-  ( a =/= b -> ( ( ( V e. W /\ ( # ` V ) = 2 ) /\ V = { a , b } ) -> a =/= b ) ) | 
						
							| 26 | 24 25 | pm2.61ine |  |-  ( ( ( V e. W /\ ( # ` V ) = 2 ) /\ V = { a , b } ) -> a =/= b ) | 
						
							| 27 |  | simpr |  |-  ( ( ( V e. W /\ ( # ` V ) = 2 ) /\ V = { a , b } ) -> V = { a , b } ) | 
						
							| 28 | 26 27 | jca |  |-  ( ( ( V e. W /\ ( # ` V ) = 2 ) /\ V = { a , b } ) -> ( a =/= b /\ V = { a , b } ) ) | 
						
							| 29 | 28 | ex |  |-  ( ( V e. W /\ ( # ` V ) = 2 ) -> ( V = { a , b } -> ( a =/= b /\ V = { a , b } ) ) ) | 
						
							| 30 | 29 | 2eximdv |  |-  ( ( V e. W /\ ( # ` V ) = 2 ) -> ( E. a E. b V = { a , b } -> E. a E. b ( a =/= b /\ V = { a , b } ) ) ) | 
						
							| 31 | 1 30 | mpd |  |-  ( ( V e. W /\ ( # ` V ) = 2 ) -> E. a E. b ( a =/= b /\ V = { a , b } ) ) |