| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwpr |  |-  ~P { X , Y } = ( { (/) , { X } } u. { { Y } , { X , Y } } ) | 
						
							| 2 | 1 | eleq2i |  |-  ( P e. ~P { X , Y } <-> P e. ( { (/) , { X } } u. { { Y } , { X , Y } } ) ) | 
						
							| 3 |  | elun |  |-  ( P e. ( { (/) , { X } } u. { { Y } , { X , Y } } ) <-> ( P e. { (/) , { X } } \/ P e. { { Y } , { X , Y } } ) ) | 
						
							| 4 | 2 3 | bitri |  |-  ( P e. ~P { X , Y } <-> ( P e. { (/) , { X } } \/ P e. { { Y } , { X , Y } } ) ) | 
						
							| 5 |  | fveq2 |  |-  ( P = (/) -> ( # ` P ) = ( # ` (/) ) ) | 
						
							| 6 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 7 | 6 | eqeq2i |  |-  ( ( # ` P ) = ( # ` (/) ) <-> ( # ` P ) = 0 ) | 
						
							| 8 |  | eqeq1 |  |-  ( ( # ` P ) = 0 -> ( ( # ` P ) = 2 <-> 0 = 2 ) ) | 
						
							| 9 |  | 0ne2 |  |-  0 =/= 2 | 
						
							| 10 |  | eqneqall |  |-  ( 0 = 2 -> ( 0 =/= 2 -> P = { X , Y } ) ) | 
						
							| 11 | 9 10 | mpi |  |-  ( 0 = 2 -> P = { X , Y } ) | 
						
							| 12 | 8 11 | biimtrdi |  |-  ( ( # ` P ) = 0 -> ( ( # ` P ) = 2 -> P = { X , Y } ) ) | 
						
							| 13 | 7 12 | sylbi |  |-  ( ( # ` P ) = ( # ` (/) ) -> ( ( # ` P ) = 2 -> P = { X , Y } ) ) | 
						
							| 14 | 5 13 | syl |  |-  ( P = (/) -> ( ( # ` P ) = 2 -> P = { X , Y } ) ) | 
						
							| 15 |  | hashsng |  |-  ( X e. _V -> ( # ` { X } ) = 1 ) | 
						
							| 16 |  | fveq2 |  |-  ( { X } = P -> ( # ` { X } ) = ( # ` P ) ) | 
						
							| 17 | 16 | eqcoms |  |-  ( P = { X } -> ( # ` { X } ) = ( # ` P ) ) | 
						
							| 18 | 17 | eqeq1d |  |-  ( P = { X } -> ( ( # ` { X } ) = 1 <-> ( # ` P ) = 1 ) ) | 
						
							| 19 |  | eqeq1 |  |-  ( ( # ` P ) = 1 -> ( ( # ` P ) = 2 <-> 1 = 2 ) ) | 
						
							| 20 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 21 |  | eqneqall |  |-  ( 1 = 2 -> ( 1 =/= 2 -> P = { X , Y } ) ) | 
						
							| 22 | 20 21 | mpi |  |-  ( 1 = 2 -> P = { X , Y } ) | 
						
							| 23 | 19 22 | biimtrdi |  |-  ( ( # ` P ) = 1 -> ( ( # ` P ) = 2 -> P = { X , Y } ) ) | 
						
							| 24 | 18 23 | biimtrdi |  |-  ( P = { X } -> ( ( # ` { X } ) = 1 -> ( ( # ` P ) = 2 -> P = { X , Y } ) ) ) | 
						
							| 25 | 15 24 | syl5com |  |-  ( X e. _V -> ( P = { X } -> ( ( # ` P ) = 2 -> P = { X , Y } ) ) ) | 
						
							| 26 |  | snprc |  |-  ( -. X e. _V <-> { X } = (/) ) | 
						
							| 27 |  | eqeq2 |  |-  ( { X } = (/) -> ( P = { X } <-> P = (/) ) ) | 
						
							| 28 | 5 6 | eqtrdi |  |-  ( P = (/) -> ( # ` P ) = 0 ) | 
						
							| 29 | 28 | eqeq1d |  |-  ( P = (/) -> ( ( # ` P ) = 2 <-> 0 = 2 ) ) | 
						
							| 30 | 29 11 | biimtrdi |  |-  ( P = (/) -> ( ( # ` P ) = 2 -> P = { X , Y } ) ) | 
						
							| 31 | 27 30 | biimtrdi |  |-  ( { X } = (/) -> ( P = { X } -> ( ( # ` P ) = 2 -> P = { X , Y } ) ) ) | 
						
							| 32 | 26 31 | sylbi |  |-  ( -. X e. _V -> ( P = { X } -> ( ( # ` P ) = 2 -> P = { X , Y } ) ) ) | 
						
							| 33 | 25 32 | pm2.61i |  |-  ( P = { X } -> ( ( # ` P ) = 2 -> P = { X , Y } ) ) | 
						
							| 34 | 14 33 | jaoi |  |-  ( ( P = (/) \/ P = { X } ) -> ( ( # ` P ) = 2 -> P = { X , Y } ) ) | 
						
							| 35 |  | hashsng |  |-  ( Y e. _V -> ( # ` { Y } ) = 1 ) | 
						
							| 36 |  | fveq2 |  |-  ( { Y } = P -> ( # ` { Y } ) = ( # ` P ) ) | 
						
							| 37 | 36 | eqcoms |  |-  ( P = { Y } -> ( # ` { Y } ) = ( # ` P ) ) | 
						
							| 38 | 37 | eqeq1d |  |-  ( P = { Y } -> ( ( # ` { Y } ) = 1 <-> ( # ` P ) = 1 ) ) | 
						
							| 39 | 38 23 | biimtrdi |  |-  ( P = { Y } -> ( ( # ` { Y } ) = 1 -> ( ( # ` P ) = 2 -> P = { X , Y } ) ) ) | 
						
							| 40 | 35 39 | syl5com |  |-  ( Y e. _V -> ( P = { Y } -> ( ( # ` P ) = 2 -> P = { X , Y } ) ) ) | 
						
							| 41 |  | snprc |  |-  ( -. Y e. _V <-> { Y } = (/) ) | 
						
							| 42 |  | eqeq2 |  |-  ( { Y } = (/) -> ( P = { Y } <-> P = (/) ) ) | 
						
							| 43 | 5 | eqeq1d |  |-  ( P = (/) -> ( ( # ` P ) = 2 <-> ( # ` (/) ) = 2 ) ) | 
						
							| 44 | 6 | eqeq1i |  |-  ( ( # ` (/) ) = 2 <-> 0 = 2 ) | 
						
							| 45 | 44 11 | sylbi |  |-  ( ( # ` (/) ) = 2 -> P = { X , Y } ) | 
						
							| 46 | 43 45 | biimtrdi |  |-  ( P = (/) -> ( ( # ` P ) = 2 -> P = { X , Y } ) ) | 
						
							| 47 | 42 46 | biimtrdi |  |-  ( { Y } = (/) -> ( P = { Y } -> ( ( # ` P ) = 2 -> P = { X , Y } ) ) ) | 
						
							| 48 | 41 47 | sylbi |  |-  ( -. Y e. _V -> ( P = { Y } -> ( ( # ` P ) = 2 -> P = { X , Y } ) ) ) | 
						
							| 49 | 40 48 | pm2.61i |  |-  ( P = { Y } -> ( ( # ` P ) = 2 -> P = { X , Y } ) ) | 
						
							| 50 |  | ax-1 |  |-  ( P = { X , Y } -> ( ( # ` P ) = 2 -> P = { X , Y } ) ) | 
						
							| 51 | 49 50 | jaoi |  |-  ( ( P = { Y } \/ P = { X , Y } ) -> ( ( # ` P ) = 2 -> P = { X , Y } ) ) | 
						
							| 52 | 34 51 | jaoi |  |-  ( ( ( P = (/) \/ P = { X } ) \/ ( P = { Y } \/ P = { X , Y } ) ) -> ( ( # ` P ) = 2 -> P = { X , Y } ) ) | 
						
							| 53 |  | elpri |  |-  ( P e. { (/) , { X } } -> ( P = (/) \/ P = { X } ) ) | 
						
							| 54 |  | elpri |  |-  ( P e. { { Y } , { X , Y } } -> ( P = { Y } \/ P = { X , Y } ) ) | 
						
							| 55 | 53 54 | orim12i |  |-  ( ( P e. { (/) , { X } } \/ P e. { { Y } , { X , Y } } ) -> ( ( P = (/) \/ P = { X } ) \/ ( P = { Y } \/ P = { X , Y } ) ) ) | 
						
							| 56 | 52 55 | syl11 |  |-  ( ( # ` P ) = 2 -> ( ( P e. { (/) , { X } } \/ P e. { { Y } , { X , Y } } ) -> P = { X , Y } ) ) | 
						
							| 57 | 4 56 | biimtrid |  |-  ( ( # ` P ) = 2 -> ( P e. ~P { X , Y } -> P = { X , Y } ) ) | 
						
							| 58 | 57 | imp |  |-  ( ( ( # ` P ) = 2 /\ P e. ~P { X , Y } ) -> P = { X , Y } ) |