| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hash3tr |  |-  ( ( V e. W /\ ( # ` V ) = 3 ) -> E. a E. b E. c V = { a , b , c } ) | 
						
							| 2 |  | ax-1 |  |-  ( ( a =/= b /\ a =/= c /\ b =/= c ) -> ( ( ( V e. W /\ ( # ` V ) = 3 ) /\ V = { a , b , c } ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) | 
						
							| 3 |  | 3ianor |  |-  ( -. ( a =/= b /\ a =/= c /\ b =/= c ) <-> ( -. a =/= b \/ -. a =/= c \/ -. b =/= c ) ) | 
						
							| 4 |  | nne |  |-  ( -. a =/= b <-> a = b ) | 
						
							| 5 |  | nne |  |-  ( -. a =/= c <-> a = c ) | 
						
							| 6 |  | nne |  |-  ( -. b =/= c <-> b = c ) | 
						
							| 7 | 4 5 6 | 3orbi123i |  |-  ( ( -. a =/= b \/ -. a =/= c \/ -. b =/= c ) <-> ( a = b \/ a = c \/ b = c ) ) | 
						
							| 8 | 3 7 | bitri |  |-  ( -. ( a =/= b /\ a =/= c /\ b =/= c ) <-> ( a = b \/ a = c \/ b = c ) ) | 
						
							| 9 |  | tpeq1 |  |-  ( a = b -> { a , b , c } = { b , b , c } ) | 
						
							| 10 |  | tpidm12 |  |-  { b , b , c } = { b , c } | 
						
							| 11 | 9 10 | eqtrdi |  |-  ( a = b -> { a , b , c } = { b , c } ) | 
						
							| 12 | 11 | eqeq2d |  |-  ( a = b -> ( V = { a , b , c } <-> V = { b , c } ) ) | 
						
							| 13 |  | fveqeq2 |  |-  ( V = { b , c } -> ( ( # ` V ) = 3 <-> ( # ` { b , c } ) = 3 ) ) | 
						
							| 14 |  | hashprlei |  |-  ( { b , c } e. Fin /\ ( # ` { b , c } ) <_ 2 ) | 
						
							| 15 |  | breq1 |  |-  ( ( # ` { b , c } ) = 3 -> ( ( # ` { b , c } ) <_ 2 <-> 3 <_ 2 ) ) | 
						
							| 16 |  | 2lt3 |  |-  2 < 3 | 
						
							| 17 |  | 2re |  |-  2 e. RR | 
						
							| 18 |  | 3re |  |-  3 e. RR | 
						
							| 19 | 17 18 | ltnlei |  |-  ( 2 < 3 <-> -. 3 <_ 2 ) | 
						
							| 20 | 16 19 | mpbi |  |-  -. 3 <_ 2 | 
						
							| 21 | 20 | pm2.21i |  |-  ( 3 <_ 2 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) | 
						
							| 22 | 15 21 | biimtrdi |  |-  ( ( # ` { b , c } ) = 3 -> ( ( # ` { b , c } ) <_ 2 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) | 
						
							| 23 | 22 | com12 |  |-  ( ( # ` { b , c } ) <_ 2 -> ( ( # ` { b , c } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) | 
						
							| 24 | 23 | adantl |  |-  ( ( { b , c } e. Fin /\ ( # ` { b , c } ) <_ 2 ) -> ( ( # ` { b , c } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) | 
						
							| 25 | 14 24 | ax-mp |  |-  ( ( # ` { b , c } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) | 
						
							| 26 | 13 25 | biimtrdi |  |-  ( V = { b , c } -> ( ( # ` V ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) | 
						
							| 27 | 26 | adantld |  |-  ( V = { b , c } -> ( ( V e. W /\ ( # ` V ) = 3 ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) | 
						
							| 28 | 12 27 | biimtrdi |  |-  ( a = b -> ( V = { a , b , c } -> ( ( V e. W /\ ( # ` V ) = 3 ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) ) | 
						
							| 29 |  | tpeq1 |  |-  ( a = c -> { a , b , c } = { c , b , c } ) | 
						
							| 30 |  | tpidm13 |  |-  { c , b , c } = { c , b } | 
						
							| 31 | 29 30 | eqtrdi |  |-  ( a = c -> { a , b , c } = { c , b } ) | 
						
							| 32 | 31 | eqeq2d |  |-  ( a = c -> ( V = { a , b , c } <-> V = { c , b } ) ) | 
						
							| 33 |  | fveqeq2 |  |-  ( V = { c , b } -> ( ( # ` V ) = 3 <-> ( # ` { c , b } ) = 3 ) ) | 
						
							| 34 |  | hashprlei |  |-  ( { c , b } e. Fin /\ ( # ` { c , b } ) <_ 2 ) | 
						
							| 35 |  | breq1 |  |-  ( ( # ` { c , b } ) = 3 -> ( ( # ` { c , b } ) <_ 2 <-> 3 <_ 2 ) ) | 
						
							| 36 | 35 21 | biimtrdi |  |-  ( ( # ` { c , b } ) = 3 -> ( ( # ` { c , b } ) <_ 2 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) | 
						
							| 37 | 36 | com12 |  |-  ( ( # ` { c , b } ) <_ 2 -> ( ( # ` { c , b } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) | 
						
							| 38 | 37 | adantl |  |-  ( ( { c , b } e. Fin /\ ( # ` { c , b } ) <_ 2 ) -> ( ( # ` { c , b } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) | 
						
							| 39 | 34 38 | ax-mp |  |-  ( ( # ` { c , b } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) | 
						
							| 40 | 33 39 | biimtrdi |  |-  ( V = { c , b } -> ( ( # ` V ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) | 
						
							| 41 | 40 | adantld |  |-  ( V = { c , b } -> ( ( V e. W /\ ( # ` V ) = 3 ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) | 
						
							| 42 | 32 41 | biimtrdi |  |-  ( a = c -> ( V = { a , b , c } -> ( ( V e. W /\ ( # ` V ) = 3 ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) ) | 
						
							| 43 |  | tpeq2 |  |-  ( b = c -> { a , b , c } = { a , c , c } ) | 
						
							| 44 |  | tpidm23 |  |-  { a , c , c } = { a , c } | 
						
							| 45 | 43 44 | eqtrdi |  |-  ( b = c -> { a , b , c } = { a , c } ) | 
						
							| 46 | 45 | eqeq2d |  |-  ( b = c -> ( V = { a , b , c } <-> V = { a , c } ) ) | 
						
							| 47 |  | fveqeq2 |  |-  ( V = { a , c } -> ( ( # ` V ) = 3 <-> ( # ` { a , c } ) = 3 ) ) | 
						
							| 48 |  | hashprlei |  |-  ( { a , c } e. Fin /\ ( # ` { a , c } ) <_ 2 ) | 
						
							| 49 |  | breq1 |  |-  ( ( # ` { a , c } ) = 3 -> ( ( # ` { a , c } ) <_ 2 <-> 3 <_ 2 ) ) | 
						
							| 50 | 49 21 | biimtrdi |  |-  ( ( # ` { a , c } ) = 3 -> ( ( # ` { a , c } ) <_ 2 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) | 
						
							| 51 | 50 | com12 |  |-  ( ( # ` { a , c } ) <_ 2 -> ( ( # ` { a , c } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) | 
						
							| 52 | 51 | adantl |  |-  ( ( { a , c } e. Fin /\ ( # ` { a , c } ) <_ 2 ) -> ( ( # ` { a , c } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) | 
						
							| 53 | 48 52 | ax-mp |  |-  ( ( # ` { a , c } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) | 
						
							| 54 | 47 53 | biimtrdi |  |-  ( V = { a , c } -> ( ( # ` V ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) | 
						
							| 55 | 54 | adantld |  |-  ( V = { a , c } -> ( ( V e. W /\ ( # ` V ) = 3 ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) | 
						
							| 56 | 46 55 | biimtrdi |  |-  ( b = c -> ( V = { a , b , c } -> ( ( V e. W /\ ( # ` V ) = 3 ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) ) | 
						
							| 57 | 28 42 56 | 3jaoi |  |-  ( ( a = b \/ a = c \/ b = c ) -> ( V = { a , b , c } -> ( ( V e. W /\ ( # ` V ) = 3 ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) ) | 
						
							| 58 | 57 | impcomd |  |-  ( ( a = b \/ a = c \/ b = c ) -> ( ( ( V e. W /\ ( # ` V ) = 3 ) /\ V = { a , b , c } ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) | 
						
							| 59 | 8 58 | sylbi |  |-  ( -. ( a =/= b /\ a =/= c /\ b =/= c ) -> ( ( ( V e. W /\ ( # ` V ) = 3 ) /\ V = { a , b , c } ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) | 
						
							| 60 | 2 59 | pm2.61i |  |-  ( ( ( V e. W /\ ( # ` V ) = 3 ) /\ V = { a , b , c } ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) | 
						
							| 61 |  | simpr |  |-  ( ( ( V e. W /\ ( # ` V ) = 3 ) /\ V = { a , b , c } ) -> V = { a , b , c } ) | 
						
							| 62 | 60 61 | jca |  |-  ( ( ( V e. W /\ ( # ` V ) = 3 ) /\ V = { a , b , c } ) -> ( ( a =/= b /\ a =/= c /\ b =/= c ) /\ V = { a , b , c } ) ) | 
						
							| 63 | 62 | ex |  |-  ( ( V e. W /\ ( # ` V ) = 3 ) -> ( V = { a , b , c } -> ( ( a =/= b /\ a =/= c /\ b =/= c ) /\ V = { a , b , c } ) ) ) | 
						
							| 64 | 63 | eximdv |  |-  ( ( V e. W /\ ( # ` V ) = 3 ) -> ( E. c V = { a , b , c } -> E. c ( ( a =/= b /\ a =/= c /\ b =/= c ) /\ V = { a , b , c } ) ) ) | 
						
							| 65 | 64 | 2eximdv |  |-  ( ( V e. W /\ ( # ` V ) = 3 ) -> ( E. a E. b E. c V = { a , b , c } -> E. a E. b E. c ( ( a =/= b /\ a =/= c /\ b =/= c ) /\ V = { a , b , c } ) ) ) | 
						
							| 66 | 1 65 | mpd |  |-  ( ( V e. W /\ ( # ` V ) = 3 ) -> E. a E. b E. c ( ( a =/= b /\ a =/= c /\ b =/= c ) /\ V = { a , b , c } ) ) |