Step |
Hyp |
Ref |
Expression |
1 |
|
hash3tr |
|- ( ( V e. W /\ ( # ` V ) = 3 ) -> E. a E. b E. c V = { a , b , c } ) |
2 |
|
ax-1 |
|- ( ( a =/= b /\ a =/= c /\ b =/= c ) -> ( ( ( V e. W /\ ( # ` V ) = 3 ) /\ V = { a , b , c } ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
3 |
|
3ianor |
|- ( -. ( a =/= b /\ a =/= c /\ b =/= c ) <-> ( -. a =/= b \/ -. a =/= c \/ -. b =/= c ) ) |
4 |
|
nne |
|- ( -. a =/= b <-> a = b ) |
5 |
|
nne |
|- ( -. a =/= c <-> a = c ) |
6 |
|
nne |
|- ( -. b =/= c <-> b = c ) |
7 |
4 5 6
|
3orbi123i |
|- ( ( -. a =/= b \/ -. a =/= c \/ -. b =/= c ) <-> ( a = b \/ a = c \/ b = c ) ) |
8 |
3 7
|
bitri |
|- ( -. ( a =/= b /\ a =/= c /\ b =/= c ) <-> ( a = b \/ a = c \/ b = c ) ) |
9 |
|
tpeq1 |
|- ( a = b -> { a , b , c } = { b , b , c } ) |
10 |
|
tpidm12 |
|- { b , b , c } = { b , c } |
11 |
9 10
|
eqtrdi |
|- ( a = b -> { a , b , c } = { b , c } ) |
12 |
11
|
eqeq2d |
|- ( a = b -> ( V = { a , b , c } <-> V = { b , c } ) ) |
13 |
|
fveqeq2 |
|- ( V = { b , c } -> ( ( # ` V ) = 3 <-> ( # ` { b , c } ) = 3 ) ) |
14 |
|
hashprlei |
|- ( { b , c } e. Fin /\ ( # ` { b , c } ) <_ 2 ) |
15 |
|
breq1 |
|- ( ( # ` { b , c } ) = 3 -> ( ( # ` { b , c } ) <_ 2 <-> 3 <_ 2 ) ) |
16 |
|
2lt3 |
|- 2 < 3 |
17 |
|
2re |
|- 2 e. RR |
18 |
|
3re |
|- 3 e. RR |
19 |
17 18
|
ltnlei |
|- ( 2 < 3 <-> -. 3 <_ 2 ) |
20 |
16 19
|
mpbi |
|- -. 3 <_ 2 |
21 |
20
|
pm2.21i |
|- ( 3 <_ 2 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) |
22 |
15 21
|
biimtrdi |
|- ( ( # ` { b , c } ) = 3 -> ( ( # ` { b , c } ) <_ 2 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
23 |
22
|
com12 |
|- ( ( # ` { b , c } ) <_ 2 -> ( ( # ` { b , c } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
24 |
23
|
adantl |
|- ( ( { b , c } e. Fin /\ ( # ` { b , c } ) <_ 2 ) -> ( ( # ` { b , c } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
25 |
14 24
|
ax-mp |
|- ( ( # ` { b , c } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) |
26 |
13 25
|
biimtrdi |
|- ( V = { b , c } -> ( ( # ` V ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
27 |
26
|
adantld |
|- ( V = { b , c } -> ( ( V e. W /\ ( # ` V ) = 3 ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
28 |
12 27
|
biimtrdi |
|- ( a = b -> ( V = { a , b , c } -> ( ( V e. W /\ ( # ` V ) = 3 ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) ) |
29 |
|
tpeq1 |
|- ( a = c -> { a , b , c } = { c , b , c } ) |
30 |
|
tpidm13 |
|- { c , b , c } = { c , b } |
31 |
29 30
|
eqtrdi |
|- ( a = c -> { a , b , c } = { c , b } ) |
32 |
31
|
eqeq2d |
|- ( a = c -> ( V = { a , b , c } <-> V = { c , b } ) ) |
33 |
|
fveqeq2 |
|- ( V = { c , b } -> ( ( # ` V ) = 3 <-> ( # ` { c , b } ) = 3 ) ) |
34 |
|
hashprlei |
|- ( { c , b } e. Fin /\ ( # ` { c , b } ) <_ 2 ) |
35 |
|
breq1 |
|- ( ( # ` { c , b } ) = 3 -> ( ( # ` { c , b } ) <_ 2 <-> 3 <_ 2 ) ) |
36 |
35 21
|
biimtrdi |
|- ( ( # ` { c , b } ) = 3 -> ( ( # ` { c , b } ) <_ 2 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
37 |
36
|
com12 |
|- ( ( # ` { c , b } ) <_ 2 -> ( ( # ` { c , b } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
38 |
37
|
adantl |
|- ( ( { c , b } e. Fin /\ ( # ` { c , b } ) <_ 2 ) -> ( ( # ` { c , b } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
39 |
34 38
|
ax-mp |
|- ( ( # ` { c , b } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) |
40 |
33 39
|
biimtrdi |
|- ( V = { c , b } -> ( ( # ` V ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
41 |
40
|
adantld |
|- ( V = { c , b } -> ( ( V e. W /\ ( # ` V ) = 3 ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
42 |
32 41
|
biimtrdi |
|- ( a = c -> ( V = { a , b , c } -> ( ( V e. W /\ ( # ` V ) = 3 ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) ) |
43 |
|
tpeq2 |
|- ( b = c -> { a , b , c } = { a , c , c } ) |
44 |
|
tpidm23 |
|- { a , c , c } = { a , c } |
45 |
43 44
|
eqtrdi |
|- ( b = c -> { a , b , c } = { a , c } ) |
46 |
45
|
eqeq2d |
|- ( b = c -> ( V = { a , b , c } <-> V = { a , c } ) ) |
47 |
|
fveqeq2 |
|- ( V = { a , c } -> ( ( # ` V ) = 3 <-> ( # ` { a , c } ) = 3 ) ) |
48 |
|
hashprlei |
|- ( { a , c } e. Fin /\ ( # ` { a , c } ) <_ 2 ) |
49 |
|
breq1 |
|- ( ( # ` { a , c } ) = 3 -> ( ( # ` { a , c } ) <_ 2 <-> 3 <_ 2 ) ) |
50 |
49 21
|
biimtrdi |
|- ( ( # ` { a , c } ) = 3 -> ( ( # ` { a , c } ) <_ 2 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
51 |
50
|
com12 |
|- ( ( # ` { a , c } ) <_ 2 -> ( ( # ` { a , c } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
52 |
51
|
adantl |
|- ( ( { a , c } e. Fin /\ ( # ` { a , c } ) <_ 2 ) -> ( ( # ` { a , c } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
53 |
48 52
|
ax-mp |
|- ( ( # ` { a , c } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) |
54 |
47 53
|
biimtrdi |
|- ( V = { a , c } -> ( ( # ` V ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
55 |
54
|
adantld |
|- ( V = { a , c } -> ( ( V e. W /\ ( # ` V ) = 3 ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
56 |
46 55
|
biimtrdi |
|- ( b = c -> ( V = { a , b , c } -> ( ( V e. W /\ ( # ` V ) = 3 ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) ) |
57 |
28 42 56
|
3jaoi |
|- ( ( a = b \/ a = c \/ b = c ) -> ( V = { a , b , c } -> ( ( V e. W /\ ( # ` V ) = 3 ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) ) |
58 |
57
|
impcomd |
|- ( ( a = b \/ a = c \/ b = c ) -> ( ( ( V e. W /\ ( # ` V ) = 3 ) /\ V = { a , b , c } ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
59 |
8 58
|
sylbi |
|- ( -. ( a =/= b /\ a =/= c /\ b =/= c ) -> ( ( ( V e. W /\ ( # ` V ) = 3 ) /\ V = { a , b , c } ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
60 |
2 59
|
pm2.61i |
|- ( ( ( V e. W /\ ( # ` V ) = 3 ) /\ V = { a , b , c } ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) |
61 |
|
simpr |
|- ( ( ( V e. W /\ ( # ` V ) = 3 ) /\ V = { a , b , c } ) -> V = { a , b , c } ) |
62 |
60 61
|
jca |
|- ( ( ( V e. W /\ ( # ` V ) = 3 ) /\ V = { a , b , c } ) -> ( ( a =/= b /\ a =/= c /\ b =/= c ) /\ V = { a , b , c } ) ) |
63 |
62
|
ex |
|- ( ( V e. W /\ ( # ` V ) = 3 ) -> ( V = { a , b , c } -> ( ( a =/= b /\ a =/= c /\ b =/= c ) /\ V = { a , b , c } ) ) ) |
64 |
63
|
eximdv |
|- ( ( V e. W /\ ( # ` V ) = 3 ) -> ( E. c V = { a , b , c } -> E. c ( ( a =/= b /\ a =/= c /\ b =/= c ) /\ V = { a , b , c } ) ) ) |
65 |
64
|
2eximdv |
|- ( ( V e. W /\ ( # ` V ) = 3 ) -> ( E. a E. b E. c V = { a , b , c } -> E. a E. b E. c ( ( a =/= b /\ a =/= c /\ b =/= c ) /\ V = { a , b , c } ) ) ) |
66 |
1 65
|
mpd |
|- ( ( V e. W /\ ( # ` V ) = 3 ) -> E. a E. b E. c ( ( a =/= b /\ a =/= c /\ b =/= c ) /\ V = { a , b , c } ) ) |