| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|- ( w = (/) -> ( # ` w ) = ( # ` (/) ) ) |
| 2 |
1
|
oveq1d |
|- ( w = (/) -> ( ( # ` w ) _C k ) = ( ( # ` (/) ) _C k ) ) |
| 3 |
|
pweq |
|- ( w = (/) -> ~P w = ~P (/) ) |
| 4 |
3
|
rabeqdv |
|- ( w = (/) -> { x e. ~P w | ( # ` x ) = k } = { x e. ~P (/) | ( # ` x ) = k } ) |
| 5 |
4
|
fveq2d |
|- ( w = (/) -> ( # ` { x e. ~P w | ( # ` x ) = k } ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) |
| 6 |
2 5
|
eqeq12d |
|- ( w = (/) -> ( ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) ) |
| 7 |
6
|
ralbidv |
|- ( w = (/) -> ( A. k e. ZZ ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> A. k e. ZZ ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) ) |
| 8 |
|
fveq2 |
|- ( w = y -> ( # ` w ) = ( # ` y ) ) |
| 9 |
8
|
oveq1d |
|- ( w = y -> ( ( # ` w ) _C k ) = ( ( # ` y ) _C k ) ) |
| 10 |
|
pweq |
|- ( w = y -> ~P w = ~P y ) |
| 11 |
10
|
rabeqdv |
|- ( w = y -> { x e. ~P w | ( # ` x ) = k } = { x e. ~P y | ( # ` x ) = k } ) |
| 12 |
11
|
fveq2d |
|- ( w = y -> ( # ` { x e. ~P w | ( # ` x ) = k } ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) ) |
| 13 |
9 12
|
eqeq12d |
|- ( w = y -> ( ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> ( ( # ` y ) _C k ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) ) ) |
| 14 |
13
|
ralbidv |
|- ( w = y -> ( A. k e. ZZ ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> A. k e. ZZ ( ( # ` y ) _C k ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) ) ) |
| 15 |
|
fveq2 |
|- ( w = ( y u. { z } ) -> ( # ` w ) = ( # ` ( y u. { z } ) ) ) |
| 16 |
15
|
oveq1d |
|- ( w = ( y u. { z } ) -> ( ( # ` w ) _C k ) = ( ( # ` ( y u. { z } ) ) _C k ) ) |
| 17 |
|
pweq |
|- ( w = ( y u. { z } ) -> ~P w = ~P ( y u. { z } ) ) |
| 18 |
17
|
rabeqdv |
|- ( w = ( y u. { z } ) -> { x e. ~P w | ( # ` x ) = k } = { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) |
| 19 |
18
|
fveq2d |
|- ( w = ( y u. { z } ) -> ( # ` { x e. ~P w | ( # ` x ) = k } ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) |
| 20 |
16 19
|
eqeq12d |
|- ( w = ( y u. { z } ) -> ( ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) ) |
| 21 |
20
|
ralbidv |
|- ( w = ( y u. { z } ) -> ( A. k e. ZZ ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> A. k e. ZZ ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) ) |
| 22 |
|
fveq2 |
|- ( w = A -> ( # ` w ) = ( # ` A ) ) |
| 23 |
22
|
oveq1d |
|- ( w = A -> ( ( # ` w ) _C k ) = ( ( # ` A ) _C k ) ) |
| 24 |
|
pweq |
|- ( w = A -> ~P w = ~P A ) |
| 25 |
24
|
rabeqdv |
|- ( w = A -> { x e. ~P w | ( # ` x ) = k } = { x e. ~P A | ( # ` x ) = k } ) |
| 26 |
25
|
fveq2d |
|- ( w = A -> ( # ` { x e. ~P w | ( # ` x ) = k } ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) ) |
| 27 |
23 26
|
eqeq12d |
|- ( w = A -> ( ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> ( ( # ` A ) _C k ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) ) ) |
| 28 |
27
|
ralbidv |
|- ( w = A -> ( A. k e. ZZ ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> A. k e. ZZ ( ( # ` A ) _C k ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) ) ) |
| 29 |
|
hash0 |
|- ( # ` (/) ) = 0 |
| 30 |
29
|
a1i |
|- ( k e. ( 0 ... 0 ) -> ( # ` (/) ) = 0 ) |
| 31 |
|
elfz1eq |
|- ( k e. ( 0 ... 0 ) -> k = 0 ) |
| 32 |
30 31
|
oveq12d |
|- ( k e. ( 0 ... 0 ) -> ( ( # ` (/) ) _C k ) = ( 0 _C 0 ) ) |
| 33 |
|
0nn0 |
|- 0 e. NN0 |
| 34 |
|
bcn0 |
|- ( 0 e. NN0 -> ( 0 _C 0 ) = 1 ) |
| 35 |
33 34
|
ax-mp |
|- ( 0 _C 0 ) = 1 |
| 36 |
32 35
|
eqtrdi |
|- ( k e. ( 0 ... 0 ) -> ( ( # ` (/) ) _C k ) = 1 ) |
| 37 |
31
|
eqcomd |
|- ( k e. ( 0 ... 0 ) -> 0 = k ) |
| 38 |
|
pw0 |
|- ~P (/) = { (/) } |
| 39 |
38
|
raleqi |
|- ( A. x e. ~P (/) ( # ` x ) = k <-> A. x e. { (/) } ( # ` x ) = k ) |
| 40 |
|
0ex |
|- (/) e. _V |
| 41 |
|
fveq2 |
|- ( x = (/) -> ( # ` x ) = ( # ` (/) ) ) |
| 42 |
41 29
|
eqtrdi |
|- ( x = (/) -> ( # ` x ) = 0 ) |
| 43 |
42
|
eqeq1d |
|- ( x = (/) -> ( ( # ` x ) = k <-> 0 = k ) ) |
| 44 |
40 43
|
ralsn |
|- ( A. x e. { (/) } ( # ` x ) = k <-> 0 = k ) |
| 45 |
39 44
|
bitri |
|- ( A. x e. ~P (/) ( # ` x ) = k <-> 0 = k ) |
| 46 |
37 45
|
sylibr |
|- ( k e. ( 0 ... 0 ) -> A. x e. ~P (/) ( # ` x ) = k ) |
| 47 |
|
rabid2 |
|- ( ~P (/) = { x e. ~P (/) | ( # ` x ) = k } <-> A. x e. ~P (/) ( # ` x ) = k ) |
| 48 |
46 47
|
sylibr |
|- ( k e. ( 0 ... 0 ) -> ~P (/) = { x e. ~P (/) | ( # ` x ) = k } ) |
| 49 |
48 38
|
eqtr3di |
|- ( k e. ( 0 ... 0 ) -> { x e. ~P (/) | ( # ` x ) = k } = { (/) } ) |
| 50 |
49
|
fveq2d |
|- ( k e. ( 0 ... 0 ) -> ( # ` { x e. ~P (/) | ( # ` x ) = k } ) = ( # ` { (/) } ) ) |
| 51 |
|
hashsng |
|- ( (/) e. _V -> ( # ` { (/) } ) = 1 ) |
| 52 |
40 51
|
ax-mp |
|- ( # ` { (/) } ) = 1 |
| 53 |
50 52
|
eqtrdi |
|- ( k e. ( 0 ... 0 ) -> ( # ` { x e. ~P (/) | ( # ` x ) = k } ) = 1 ) |
| 54 |
36 53
|
eqtr4d |
|- ( k e. ( 0 ... 0 ) -> ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) |
| 55 |
54
|
adantl |
|- ( ( k e. ZZ /\ k e. ( 0 ... 0 ) ) -> ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) |
| 56 |
29
|
oveq1i |
|- ( ( # ` (/) ) _C k ) = ( 0 _C k ) |
| 57 |
|
bcval3 |
|- ( ( 0 e. NN0 /\ k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( 0 _C k ) = 0 ) |
| 58 |
33 57
|
mp3an1 |
|- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( 0 _C k ) = 0 ) |
| 59 |
|
id |
|- ( 0 = k -> 0 = k ) |
| 60 |
|
0z |
|- 0 e. ZZ |
| 61 |
|
elfz3 |
|- ( 0 e. ZZ -> 0 e. ( 0 ... 0 ) ) |
| 62 |
60 61
|
ax-mp |
|- 0 e. ( 0 ... 0 ) |
| 63 |
59 62
|
eqeltrrdi |
|- ( 0 = k -> k e. ( 0 ... 0 ) ) |
| 64 |
63
|
con3i |
|- ( -. k e. ( 0 ... 0 ) -> -. 0 = k ) |
| 65 |
64
|
adantl |
|- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> -. 0 = k ) |
| 66 |
38
|
raleqi |
|- ( A. x e. ~P (/) -. ( # ` x ) = k <-> A. x e. { (/) } -. ( # ` x ) = k ) |
| 67 |
43
|
notbid |
|- ( x = (/) -> ( -. ( # ` x ) = k <-> -. 0 = k ) ) |
| 68 |
40 67
|
ralsn |
|- ( A. x e. { (/) } -. ( # ` x ) = k <-> -. 0 = k ) |
| 69 |
66 68
|
bitri |
|- ( A. x e. ~P (/) -. ( # ` x ) = k <-> -. 0 = k ) |
| 70 |
65 69
|
sylibr |
|- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> A. x e. ~P (/) -. ( # ` x ) = k ) |
| 71 |
|
rabeq0 |
|- ( { x e. ~P (/) | ( # ` x ) = k } = (/) <-> A. x e. ~P (/) -. ( # ` x ) = k ) |
| 72 |
70 71
|
sylibr |
|- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> { x e. ~P (/) | ( # ` x ) = k } = (/) ) |
| 73 |
72
|
fveq2d |
|- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( # ` { x e. ~P (/) | ( # ` x ) = k } ) = ( # ` (/) ) ) |
| 74 |
73 29
|
eqtrdi |
|- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( # ` { x e. ~P (/) | ( # ` x ) = k } ) = 0 ) |
| 75 |
58 74
|
eqtr4d |
|- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( 0 _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) |
| 76 |
56 75
|
eqtrid |
|- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) |
| 77 |
55 76
|
pm2.61dan |
|- ( k e. ZZ -> ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) |
| 78 |
77
|
rgen |
|- A. k e. ZZ ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) |
| 79 |
|
oveq2 |
|- ( k = j -> ( ( # ` y ) _C k ) = ( ( # ` y ) _C j ) ) |
| 80 |
|
eqeq2 |
|- ( k = j -> ( ( # ` x ) = k <-> ( # ` x ) = j ) ) |
| 81 |
80
|
rabbidv |
|- ( k = j -> { x e. ~P y | ( # ` x ) = k } = { x e. ~P y | ( # ` x ) = j } ) |
| 82 |
|
fveqeq2 |
|- ( x = z -> ( ( # ` x ) = j <-> ( # ` z ) = j ) ) |
| 83 |
82
|
cbvrabv |
|- { x e. ~P y | ( # ` x ) = j } = { z e. ~P y | ( # ` z ) = j } |
| 84 |
81 83
|
eqtrdi |
|- ( k = j -> { x e. ~P y | ( # ` x ) = k } = { z e. ~P y | ( # ` z ) = j } ) |
| 85 |
84
|
fveq2d |
|- ( k = j -> ( # ` { x e. ~P y | ( # ` x ) = k } ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) |
| 86 |
79 85
|
eqeq12d |
|- ( k = j -> ( ( ( # ` y ) _C k ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) <-> ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) |
| 87 |
86
|
cbvralvw |
|- ( A. k e. ZZ ( ( # ` y ) _C k ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) <-> A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) |
| 88 |
|
simpll |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> y e. Fin ) |
| 89 |
|
simplr |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> -. z e. y ) |
| 90 |
|
simprr |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) |
| 91 |
83
|
fveq2i |
|- ( # ` { x e. ~P y | ( # ` x ) = j } ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) |
| 92 |
91
|
eqeq2i |
|- ( ( ( # ` y ) _C j ) = ( # ` { x e. ~P y | ( # ` x ) = j } ) <-> ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) |
| 93 |
92
|
ralbii |
|- ( A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { x e. ~P y | ( # ` x ) = j } ) <-> A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) |
| 94 |
90 93
|
sylibr |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { x e. ~P y | ( # ` x ) = j } ) ) |
| 95 |
|
simprl |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> k e. ZZ ) |
| 96 |
88 89 94 95
|
hashbclem |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) |
| 97 |
96
|
expr |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ k e. ZZ ) -> ( A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) -> ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) ) |
| 98 |
97
|
ralrimdva |
|- ( ( y e. Fin /\ -. z e. y ) -> ( A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) -> A. k e. ZZ ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) ) |
| 99 |
87 98
|
biimtrid |
|- ( ( y e. Fin /\ -. z e. y ) -> ( A. k e. ZZ ( ( # ` y ) _C k ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) -> A. k e. ZZ ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) ) |
| 100 |
7 14 21 28 78 99
|
findcard2s |
|- ( A e. Fin -> A. k e. ZZ ( ( # ` A ) _C k ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) ) |
| 101 |
|
oveq2 |
|- ( k = K -> ( ( # ` A ) _C k ) = ( ( # ` A ) _C K ) ) |
| 102 |
|
eqeq2 |
|- ( k = K -> ( ( # ` x ) = k <-> ( # ` x ) = K ) ) |
| 103 |
102
|
rabbidv |
|- ( k = K -> { x e. ~P A | ( # ` x ) = k } = { x e. ~P A | ( # ` x ) = K } ) |
| 104 |
103
|
fveq2d |
|- ( k = K -> ( # ` { x e. ~P A | ( # ` x ) = k } ) = ( # ` { x e. ~P A | ( # ` x ) = K } ) ) |
| 105 |
101 104
|
eqeq12d |
|- ( k = K -> ( ( ( # ` A ) _C k ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) <-> ( ( # ` A ) _C K ) = ( # ` { x e. ~P A | ( # ` x ) = K } ) ) ) |
| 106 |
105
|
rspccva |
|- ( ( A. k e. ZZ ( ( # ` A ) _C k ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) /\ K e. ZZ ) -> ( ( # ` A ) _C K ) = ( # ` { x e. ~P A | ( # ` x ) = K } ) ) |
| 107 |
100 106
|
sylan |
|- ( ( A e. Fin /\ K e. ZZ ) -> ( ( # ` A ) _C K ) = ( # ` { x e. ~P A | ( # ` x ) = K } ) ) |