| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( w = (/) -> ( # ` w ) = ( # ` (/) ) ) | 
						
							| 2 | 1 | oveq1d |  |-  ( w = (/) -> ( ( # ` w ) _C k ) = ( ( # ` (/) ) _C k ) ) | 
						
							| 3 |  | pweq |  |-  ( w = (/) -> ~P w = ~P (/) ) | 
						
							| 4 | 3 | rabeqdv |  |-  ( w = (/) -> { x e. ~P w | ( # ` x ) = k } = { x e. ~P (/) | ( # ` x ) = k } ) | 
						
							| 5 | 4 | fveq2d |  |-  ( w = (/) -> ( # ` { x e. ~P w | ( # ` x ) = k } ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) | 
						
							| 6 | 2 5 | eqeq12d |  |-  ( w = (/) -> ( ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) ) | 
						
							| 7 | 6 | ralbidv |  |-  ( w = (/) -> ( A. k e. ZZ ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> A. k e. ZZ ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) ) | 
						
							| 8 |  | fveq2 |  |-  ( w = y -> ( # ` w ) = ( # ` y ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( w = y -> ( ( # ` w ) _C k ) = ( ( # ` y ) _C k ) ) | 
						
							| 10 |  | pweq |  |-  ( w = y -> ~P w = ~P y ) | 
						
							| 11 | 10 | rabeqdv |  |-  ( w = y -> { x e. ~P w | ( # ` x ) = k } = { x e. ~P y | ( # ` x ) = k } ) | 
						
							| 12 | 11 | fveq2d |  |-  ( w = y -> ( # ` { x e. ~P w | ( # ` x ) = k } ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) ) | 
						
							| 13 | 9 12 | eqeq12d |  |-  ( w = y -> ( ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> ( ( # ` y ) _C k ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) ) ) | 
						
							| 14 | 13 | ralbidv |  |-  ( w = y -> ( A. k e. ZZ ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> A. k e. ZZ ( ( # ` y ) _C k ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) ) ) | 
						
							| 15 |  | fveq2 |  |-  ( w = ( y u. { z } ) -> ( # ` w ) = ( # ` ( y u. { z } ) ) ) | 
						
							| 16 | 15 | oveq1d |  |-  ( w = ( y u. { z } ) -> ( ( # ` w ) _C k ) = ( ( # ` ( y u. { z } ) ) _C k ) ) | 
						
							| 17 |  | pweq |  |-  ( w = ( y u. { z } ) -> ~P w = ~P ( y u. { z } ) ) | 
						
							| 18 | 17 | rabeqdv |  |-  ( w = ( y u. { z } ) -> { x e. ~P w | ( # ` x ) = k } = { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) | 
						
							| 19 | 18 | fveq2d |  |-  ( w = ( y u. { z } ) -> ( # ` { x e. ~P w | ( # ` x ) = k } ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) | 
						
							| 20 | 16 19 | eqeq12d |  |-  ( w = ( y u. { z } ) -> ( ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) ) | 
						
							| 21 | 20 | ralbidv |  |-  ( w = ( y u. { z } ) -> ( A. k e. ZZ ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> A. k e. ZZ ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) ) | 
						
							| 22 |  | fveq2 |  |-  ( w = A -> ( # ` w ) = ( # ` A ) ) | 
						
							| 23 | 22 | oveq1d |  |-  ( w = A -> ( ( # ` w ) _C k ) = ( ( # ` A ) _C k ) ) | 
						
							| 24 |  | pweq |  |-  ( w = A -> ~P w = ~P A ) | 
						
							| 25 | 24 | rabeqdv |  |-  ( w = A -> { x e. ~P w | ( # ` x ) = k } = { x e. ~P A | ( # ` x ) = k } ) | 
						
							| 26 | 25 | fveq2d |  |-  ( w = A -> ( # ` { x e. ~P w | ( # ` x ) = k } ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) ) | 
						
							| 27 | 23 26 | eqeq12d |  |-  ( w = A -> ( ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> ( ( # ` A ) _C k ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) ) ) | 
						
							| 28 | 27 | ralbidv |  |-  ( w = A -> ( A. k e. ZZ ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> A. k e. ZZ ( ( # ` A ) _C k ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) ) ) | 
						
							| 29 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 30 | 29 | a1i |  |-  ( k e. ( 0 ... 0 ) -> ( # ` (/) ) = 0 ) | 
						
							| 31 |  | elfz1eq |  |-  ( k e. ( 0 ... 0 ) -> k = 0 ) | 
						
							| 32 | 30 31 | oveq12d |  |-  ( k e. ( 0 ... 0 ) -> ( ( # ` (/) ) _C k ) = ( 0 _C 0 ) ) | 
						
							| 33 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 34 |  | bcn0 |  |-  ( 0 e. NN0 -> ( 0 _C 0 ) = 1 ) | 
						
							| 35 | 33 34 | ax-mp |  |-  ( 0 _C 0 ) = 1 | 
						
							| 36 | 32 35 | eqtrdi |  |-  ( k e. ( 0 ... 0 ) -> ( ( # ` (/) ) _C k ) = 1 ) | 
						
							| 37 | 31 | eqcomd |  |-  ( k e. ( 0 ... 0 ) -> 0 = k ) | 
						
							| 38 |  | pw0 |  |-  ~P (/) = { (/) } | 
						
							| 39 | 38 | raleqi |  |-  ( A. x e. ~P (/) ( # ` x ) = k <-> A. x e. { (/) } ( # ` x ) = k ) | 
						
							| 40 |  | 0ex |  |-  (/) e. _V | 
						
							| 41 |  | fveq2 |  |-  ( x = (/) -> ( # ` x ) = ( # ` (/) ) ) | 
						
							| 42 | 41 29 | eqtrdi |  |-  ( x = (/) -> ( # ` x ) = 0 ) | 
						
							| 43 | 42 | eqeq1d |  |-  ( x = (/) -> ( ( # ` x ) = k <-> 0 = k ) ) | 
						
							| 44 | 40 43 | ralsn |  |-  ( A. x e. { (/) } ( # ` x ) = k <-> 0 = k ) | 
						
							| 45 | 39 44 | bitri |  |-  ( A. x e. ~P (/) ( # ` x ) = k <-> 0 = k ) | 
						
							| 46 | 37 45 | sylibr |  |-  ( k e. ( 0 ... 0 ) -> A. x e. ~P (/) ( # ` x ) = k ) | 
						
							| 47 |  | rabid2 |  |-  ( ~P (/) = { x e. ~P (/) | ( # ` x ) = k } <-> A. x e. ~P (/) ( # ` x ) = k ) | 
						
							| 48 | 46 47 | sylibr |  |-  ( k e. ( 0 ... 0 ) -> ~P (/) = { x e. ~P (/) | ( # ` x ) = k } ) | 
						
							| 49 | 48 38 | eqtr3di |  |-  ( k e. ( 0 ... 0 ) -> { x e. ~P (/) | ( # ` x ) = k } = { (/) } ) | 
						
							| 50 | 49 | fveq2d |  |-  ( k e. ( 0 ... 0 ) -> ( # ` { x e. ~P (/) | ( # ` x ) = k } ) = ( # ` { (/) } ) ) | 
						
							| 51 |  | hashsng |  |-  ( (/) e. _V -> ( # ` { (/) } ) = 1 ) | 
						
							| 52 | 40 51 | ax-mp |  |-  ( # ` { (/) } ) = 1 | 
						
							| 53 | 50 52 | eqtrdi |  |-  ( k e. ( 0 ... 0 ) -> ( # ` { x e. ~P (/) | ( # ` x ) = k } ) = 1 ) | 
						
							| 54 | 36 53 | eqtr4d |  |-  ( k e. ( 0 ... 0 ) -> ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) | 
						
							| 55 | 54 | adantl |  |-  ( ( k e. ZZ /\ k e. ( 0 ... 0 ) ) -> ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) | 
						
							| 56 | 29 | oveq1i |  |-  ( ( # ` (/) ) _C k ) = ( 0 _C k ) | 
						
							| 57 |  | bcval3 |  |-  ( ( 0 e. NN0 /\ k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( 0 _C k ) = 0 ) | 
						
							| 58 | 33 57 | mp3an1 |  |-  ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( 0 _C k ) = 0 ) | 
						
							| 59 |  | id |  |-  ( 0 = k -> 0 = k ) | 
						
							| 60 |  | 0z |  |-  0 e. ZZ | 
						
							| 61 |  | elfz3 |  |-  ( 0 e. ZZ -> 0 e. ( 0 ... 0 ) ) | 
						
							| 62 | 60 61 | ax-mp |  |-  0 e. ( 0 ... 0 ) | 
						
							| 63 | 59 62 | eqeltrrdi |  |-  ( 0 = k -> k e. ( 0 ... 0 ) ) | 
						
							| 64 | 63 | con3i |  |-  ( -. k e. ( 0 ... 0 ) -> -. 0 = k ) | 
						
							| 65 | 64 | adantl |  |-  ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> -. 0 = k ) | 
						
							| 66 | 38 | raleqi |  |-  ( A. x e. ~P (/) -. ( # ` x ) = k <-> A. x e. { (/) } -. ( # ` x ) = k ) | 
						
							| 67 | 43 | notbid |  |-  ( x = (/) -> ( -. ( # ` x ) = k <-> -. 0 = k ) ) | 
						
							| 68 | 40 67 | ralsn |  |-  ( A. x e. { (/) } -. ( # ` x ) = k <-> -. 0 = k ) | 
						
							| 69 | 66 68 | bitri |  |-  ( A. x e. ~P (/) -. ( # ` x ) = k <-> -. 0 = k ) | 
						
							| 70 | 65 69 | sylibr |  |-  ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> A. x e. ~P (/) -. ( # ` x ) = k ) | 
						
							| 71 |  | rabeq0 |  |-  ( { x e. ~P (/) | ( # ` x ) = k } = (/) <-> A. x e. ~P (/) -. ( # ` x ) = k ) | 
						
							| 72 | 70 71 | sylibr |  |-  ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> { x e. ~P (/) | ( # ` x ) = k } = (/) ) | 
						
							| 73 | 72 | fveq2d |  |-  ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( # ` { x e. ~P (/) | ( # ` x ) = k } ) = ( # ` (/) ) ) | 
						
							| 74 | 73 29 | eqtrdi |  |-  ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( # ` { x e. ~P (/) | ( # ` x ) = k } ) = 0 ) | 
						
							| 75 | 58 74 | eqtr4d |  |-  ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( 0 _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) | 
						
							| 76 | 56 75 | eqtrid |  |-  ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) | 
						
							| 77 | 55 76 | pm2.61dan |  |-  ( k e. ZZ -> ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) | 
						
							| 78 | 77 | rgen |  |-  A. k e. ZZ ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) | 
						
							| 79 |  | oveq2 |  |-  ( k = j -> ( ( # ` y ) _C k ) = ( ( # ` y ) _C j ) ) | 
						
							| 80 |  | eqeq2 |  |-  ( k = j -> ( ( # ` x ) = k <-> ( # ` x ) = j ) ) | 
						
							| 81 | 80 | rabbidv |  |-  ( k = j -> { x e. ~P y | ( # ` x ) = k } = { x e. ~P y | ( # ` x ) = j } ) | 
						
							| 82 |  | fveqeq2 |  |-  ( x = z -> ( ( # ` x ) = j <-> ( # ` z ) = j ) ) | 
						
							| 83 | 82 | cbvrabv |  |-  { x e. ~P y | ( # ` x ) = j } = { z e. ~P y | ( # ` z ) = j } | 
						
							| 84 | 81 83 | eqtrdi |  |-  ( k = j -> { x e. ~P y | ( # ` x ) = k } = { z e. ~P y | ( # ` z ) = j } ) | 
						
							| 85 | 84 | fveq2d |  |-  ( k = j -> ( # ` { x e. ~P y | ( # ` x ) = k } ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) | 
						
							| 86 | 79 85 | eqeq12d |  |-  ( k = j -> ( ( ( # ` y ) _C k ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) <-> ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) | 
						
							| 87 | 86 | cbvralvw |  |-  ( A. k e. ZZ ( ( # ` y ) _C k ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) <-> A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) | 
						
							| 88 |  | simpll |  |-  ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> y e. Fin ) | 
						
							| 89 |  | simplr |  |-  ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> -. z e. y ) | 
						
							| 90 |  | simprr |  |-  ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) | 
						
							| 91 | 83 | fveq2i |  |-  ( # ` { x e. ~P y | ( # ` x ) = j } ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) | 
						
							| 92 | 91 | eqeq2i |  |-  ( ( ( # ` y ) _C j ) = ( # ` { x e. ~P y | ( # ` x ) = j } ) <-> ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) | 
						
							| 93 | 92 | ralbii |  |-  ( A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { x e. ~P y | ( # ` x ) = j } ) <-> A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) | 
						
							| 94 | 90 93 | sylibr |  |-  ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { x e. ~P y | ( # ` x ) = j } ) ) | 
						
							| 95 |  | simprl |  |-  ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> k e. ZZ ) | 
						
							| 96 | 88 89 94 95 | hashbclem |  |-  ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) | 
						
							| 97 | 96 | expr |  |-  ( ( ( y e. Fin /\ -. z e. y ) /\ k e. ZZ ) -> ( A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) -> ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) ) | 
						
							| 98 | 97 | ralrimdva |  |-  ( ( y e. Fin /\ -. z e. y ) -> ( A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) -> A. k e. ZZ ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) ) | 
						
							| 99 | 87 98 | biimtrid |  |-  ( ( y e. Fin /\ -. z e. y ) -> ( A. k e. ZZ ( ( # ` y ) _C k ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) -> A. k e. ZZ ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) ) | 
						
							| 100 | 7 14 21 28 78 99 | findcard2s |  |-  ( A e. Fin -> A. k e. ZZ ( ( # ` A ) _C k ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) ) | 
						
							| 101 |  | oveq2 |  |-  ( k = K -> ( ( # ` A ) _C k ) = ( ( # ` A ) _C K ) ) | 
						
							| 102 |  | eqeq2 |  |-  ( k = K -> ( ( # ` x ) = k <-> ( # ` x ) = K ) ) | 
						
							| 103 | 102 | rabbidv |  |-  ( k = K -> { x e. ~P A | ( # ` x ) = k } = { x e. ~P A | ( # ` x ) = K } ) | 
						
							| 104 | 103 | fveq2d |  |-  ( k = K -> ( # ` { x e. ~P A | ( # ` x ) = k } ) = ( # ` { x e. ~P A | ( # ` x ) = K } ) ) | 
						
							| 105 | 101 104 | eqeq12d |  |-  ( k = K -> ( ( ( # ` A ) _C k ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) <-> ( ( # ` A ) _C K ) = ( # ` { x e. ~P A | ( # ` x ) = K } ) ) ) | 
						
							| 106 | 105 | rspccva |  |-  ( ( A. k e. ZZ ( ( # ` A ) _C k ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) /\ K e. ZZ ) -> ( ( # ` A ) _C K ) = ( # ` { x e. ~P A | ( # ` x ) = K } ) ) | 
						
							| 107 | 100 106 | sylan |  |-  ( ( A e. Fin /\ K e. ZZ ) -> ( ( # ` A ) _C K ) = ( # ` { x e. ~P A | ( # ` x ) = K } ) ) |