Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( w = (/) -> ( # ` w ) = ( # ` (/) ) ) |
2 |
1
|
oveq1d |
|- ( w = (/) -> ( ( # ` w ) _C k ) = ( ( # ` (/) ) _C k ) ) |
3 |
|
pweq |
|- ( w = (/) -> ~P w = ~P (/) ) |
4 |
3
|
rabeqdv |
|- ( w = (/) -> { x e. ~P w | ( # ` x ) = k } = { x e. ~P (/) | ( # ` x ) = k } ) |
5 |
4
|
fveq2d |
|- ( w = (/) -> ( # ` { x e. ~P w | ( # ` x ) = k } ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) |
6 |
2 5
|
eqeq12d |
|- ( w = (/) -> ( ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) ) |
7 |
6
|
ralbidv |
|- ( w = (/) -> ( A. k e. ZZ ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> A. k e. ZZ ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) ) |
8 |
|
fveq2 |
|- ( w = y -> ( # ` w ) = ( # ` y ) ) |
9 |
8
|
oveq1d |
|- ( w = y -> ( ( # ` w ) _C k ) = ( ( # ` y ) _C k ) ) |
10 |
|
pweq |
|- ( w = y -> ~P w = ~P y ) |
11 |
10
|
rabeqdv |
|- ( w = y -> { x e. ~P w | ( # ` x ) = k } = { x e. ~P y | ( # ` x ) = k } ) |
12 |
11
|
fveq2d |
|- ( w = y -> ( # ` { x e. ~P w | ( # ` x ) = k } ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) ) |
13 |
9 12
|
eqeq12d |
|- ( w = y -> ( ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> ( ( # ` y ) _C k ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) ) ) |
14 |
13
|
ralbidv |
|- ( w = y -> ( A. k e. ZZ ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> A. k e. ZZ ( ( # ` y ) _C k ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) ) ) |
15 |
|
fveq2 |
|- ( w = ( y u. { z } ) -> ( # ` w ) = ( # ` ( y u. { z } ) ) ) |
16 |
15
|
oveq1d |
|- ( w = ( y u. { z } ) -> ( ( # ` w ) _C k ) = ( ( # ` ( y u. { z } ) ) _C k ) ) |
17 |
|
pweq |
|- ( w = ( y u. { z } ) -> ~P w = ~P ( y u. { z } ) ) |
18 |
17
|
rabeqdv |
|- ( w = ( y u. { z } ) -> { x e. ~P w | ( # ` x ) = k } = { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) |
19 |
18
|
fveq2d |
|- ( w = ( y u. { z } ) -> ( # ` { x e. ~P w | ( # ` x ) = k } ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) |
20 |
16 19
|
eqeq12d |
|- ( w = ( y u. { z } ) -> ( ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) ) |
21 |
20
|
ralbidv |
|- ( w = ( y u. { z } ) -> ( A. k e. ZZ ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> A. k e. ZZ ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) ) |
22 |
|
fveq2 |
|- ( w = A -> ( # ` w ) = ( # ` A ) ) |
23 |
22
|
oveq1d |
|- ( w = A -> ( ( # ` w ) _C k ) = ( ( # ` A ) _C k ) ) |
24 |
|
pweq |
|- ( w = A -> ~P w = ~P A ) |
25 |
24
|
rabeqdv |
|- ( w = A -> { x e. ~P w | ( # ` x ) = k } = { x e. ~P A | ( # ` x ) = k } ) |
26 |
25
|
fveq2d |
|- ( w = A -> ( # ` { x e. ~P w | ( # ` x ) = k } ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) ) |
27 |
23 26
|
eqeq12d |
|- ( w = A -> ( ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> ( ( # ` A ) _C k ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) ) ) |
28 |
27
|
ralbidv |
|- ( w = A -> ( A. k e. ZZ ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> A. k e. ZZ ( ( # ` A ) _C k ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) ) ) |
29 |
|
hash0 |
|- ( # ` (/) ) = 0 |
30 |
29
|
a1i |
|- ( k e. ( 0 ... 0 ) -> ( # ` (/) ) = 0 ) |
31 |
|
elfz1eq |
|- ( k e. ( 0 ... 0 ) -> k = 0 ) |
32 |
30 31
|
oveq12d |
|- ( k e. ( 0 ... 0 ) -> ( ( # ` (/) ) _C k ) = ( 0 _C 0 ) ) |
33 |
|
0nn0 |
|- 0 e. NN0 |
34 |
|
bcn0 |
|- ( 0 e. NN0 -> ( 0 _C 0 ) = 1 ) |
35 |
33 34
|
ax-mp |
|- ( 0 _C 0 ) = 1 |
36 |
32 35
|
eqtrdi |
|- ( k e. ( 0 ... 0 ) -> ( ( # ` (/) ) _C k ) = 1 ) |
37 |
31
|
eqcomd |
|- ( k e. ( 0 ... 0 ) -> 0 = k ) |
38 |
|
pw0 |
|- ~P (/) = { (/) } |
39 |
38
|
raleqi |
|- ( A. x e. ~P (/) ( # ` x ) = k <-> A. x e. { (/) } ( # ` x ) = k ) |
40 |
|
0ex |
|- (/) e. _V |
41 |
|
fveq2 |
|- ( x = (/) -> ( # ` x ) = ( # ` (/) ) ) |
42 |
41 29
|
eqtrdi |
|- ( x = (/) -> ( # ` x ) = 0 ) |
43 |
42
|
eqeq1d |
|- ( x = (/) -> ( ( # ` x ) = k <-> 0 = k ) ) |
44 |
40 43
|
ralsn |
|- ( A. x e. { (/) } ( # ` x ) = k <-> 0 = k ) |
45 |
39 44
|
bitri |
|- ( A. x e. ~P (/) ( # ` x ) = k <-> 0 = k ) |
46 |
37 45
|
sylibr |
|- ( k e. ( 0 ... 0 ) -> A. x e. ~P (/) ( # ` x ) = k ) |
47 |
|
rabid2 |
|- ( ~P (/) = { x e. ~P (/) | ( # ` x ) = k } <-> A. x e. ~P (/) ( # ` x ) = k ) |
48 |
46 47
|
sylibr |
|- ( k e. ( 0 ... 0 ) -> ~P (/) = { x e. ~P (/) | ( # ` x ) = k } ) |
49 |
48 38
|
eqtr3di |
|- ( k e. ( 0 ... 0 ) -> { x e. ~P (/) | ( # ` x ) = k } = { (/) } ) |
50 |
49
|
fveq2d |
|- ( k e. ( 0 ... 0 ) -> ( # ` { x e. ~P (/) | ( # ` x ) = k } ) = ( # ` { (/) } ) ) |
51 |
|
hashsng |
|- ( (/) e. _V -> ( # ` { (/) } ) = 1 ) |
52 |
40 51
|
ax-mp |
|- ( # ` { (/) } ) = 1 |
53 |
50 52
|
eqtrdi |
|- ( k e. ( 0 ... 0 ) -> ( # ` { x e. ~P (/) | ( # ` x ) = k } ) = 1 ) |
54 |
36 53
|
eqtr4d |
|- ( k e. ( 0 ... 0 ) -> ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) |
55 |
54
|
adantl |
|- ( ( k e. ZZ /\ k e. ( 0 ... 0 ) ) -> ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) |
56 |
29
|
oveq1i |
|- ( ( # ` (/) ) _C k ) = ( 0 _C k ) |
57 |
|
bcval3 |
|- ( ( 0 e. NN0 /\ k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( 0 _C k ) = 0 ) |
58 |
33 57
|
mp3an1 |
|- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( 0 _C k ) = 0 ) |
59 |
|
id |
|- ( 0 = k -> 0 = k ) |
60 |
|
0z |
|- 0 e. ZZ |
61 |
|
elfz3 |
|- ( 0 e. ZZ -> 0 e. ( 0 ... 0 ) ) |
62 |
60 61
|
ax-mp |
|- 0 e. ( 0 ... 0 ) |
63 |
59 62
|
eqeltrrdi |
|- ( 0 = k -> k e. ( 0 ... 0 ) ) |
64 |
63
|
con3i |
|- ( -. k e. ( 0 ... 0 ) -> -. 0 = k ) |
65 |
64
|
adantl |
|- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> -. 0 = k ) |
66 |
38
|
raleqi |
|- ( A. x e. ~P (/) -. ( # ` x ) = k <-> A. x e. { (/) } -. ( # ` x ) = k ) |
67 |
43
|
notbid |
|- ( x = (/) -> ( -. ( # ` x ) = k <-> -. 0 = k ) ) |
68 |
40 67
|
ralsn |
|- ( A. x e. { (/) } -. ( # ` x ) = k <-> -. 0 = k ) |
69 |
66 68
|
bitri |
|- ( A. x e. ~P (/) -. ( # ` x ) = k <-> -. 0 = k ) |
70 |
65 69
|
sylibr |
|- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> A. x e. ~P (/) -. ( # ` x ) = k ) |
71 |
|
rabeq0 |
|- ( { x e. ~P (/) | ( # ` x ) = k } = (/) <-> A. x e. ~P (/) -. ( # ` x ) = k ) |
72 |
70 71
|
sylibr |
|- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> { x e. ~P (/) | ( # ` x ) = k } = (/) ) |
73 |
72
|
fveq2d |
|- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( # ` { x e. ~P (/) | ( # ` x ) = k } ) = ( # ` (/) ) ) |
74 |
73 29
|
eqtrdi |
|- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( # ` { x e. ~P (/) | ( # ` x ) = k } ) = 0 ) |
75 |
58 74
|
eqtr4d |
|- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( 0 _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) |
76 |
56 75
|
eqtrid |
|- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) |
77 |
55 76
|
pm2.61dan |
|- ( k e. ZZ -> ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) |
78 |
77
|
rgen |
|- A. k e. ZZ ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) |
79 |
|
oveq2 |
|- ( k = j -> ( ( # ` y ) _C k ) = ( ( # ` y ) _C j ) ) |
80 |
|
eqeq2 |
|- ( k = j -> ( ( # ` x ) = k <-> ( # ` x ) = j ) ) |
81 |
80
|
rabbidv |
|- ( k = j -> { x e. ~P y | ( # ` x ) = k } = { x e. ~P y | ( # ` x ) = j } ) |
82 |
|
fveqeq2 |
|- ( x = z -> ( ( # ` x ) = j <-> ( # ` z ) = j ) ) |
83 |
82
|
cbvrabv |
|- { x e. ~P y | ( # ` x ) = j } = { z e. ~P y | ( # ` z ) = j } |
84 |
81 83
|
eqtrdi |
|- ( k = j -> { x e. ~P y | ( # ` x ) = k } = { z e. ~P y | ( # ` z ) = j } ) |
85 |
84
|
fveq2d |
|- ( k = j -> ( # ` { x e. ~P y | ( # ` x ) = k } ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) |
86 |
79 85
|
eqeq12d |
|- ( k = j -> ( ( ( # ` y ) _C k ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) <-> ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) |
87 |
86
|
cbvralvw |
|- ( A. k e. ZZ ( ( # ` y ) _C k ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) <-> A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) |
88 |
|
simpll |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> y e. Fin ) |
89 |
|
simplr |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> -. z e. y ) |
90 |
|
simprr |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) |
91 |
83
|
fveq2i |
|- ( # ` { x e. ~P y | ( # ` x ) = j } ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) |
92 |
91
|
eqeq2i |
|- ( ( ( # ` y ) _C j ) = ( # ` { x e. ~P y | ( # ` x ) = j } ) <-> ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) |
93 |
92
|
ralbii |
|- ( A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { x e. ~P y | ( # ` x ) = j } ) <-> A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) |
94 |
90 93
|
sylibr |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { x e. ~P y | ( # ` x ) = j } ) ) |
95 |
|
simprl |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> k e. ZZ ) |
96 |
88 89 94 95
|
hashbclem |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) |
97 |
96
|
expr |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ k e. ZZ ) -> ( A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) -> ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) ) |
98 |
97
|
ralrimdva |
|- ( ( y e. Fin /\ -. z e. y ) -> ( A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) -> A. k e. ZZ ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) ) |
99 |
87 98
|
syl5bi |
|- ( ( y e. Fin /\ -. z e. y ) -> ( A. k e. ZZ ( ( # ` y ) _C k ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) -> A. k e. ZZ ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) ) |
100 |
7 14 21 28 78 99
|
findcard2s |
|- ( A e. Fin -> A. k e. ZZ ( ( # ` A ) _C k ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) ) |
101 |
|
oveq2 |
|- ( k = K -> ( ( # ` A ) _C k ) = ( ( # ` A ) _C K ) ) |
102 |
|
eqeq2 |
|- ( k = K -> ( ( # ` x ) = k <-> ( # ` x ) = K ) ) |
103 |
102
|
rabbidv |
|- ( k = K -> { x e. ~P A | ( # ` x ) = k } = { x e. ~P A | ( # ` x ) = K } ) |
104 |
103
|
fveq2d |
|- ( k = K -> ( # ` { x e. ~P A | ( # ` x ) = k } ) = ( # ` { x e. ~P A | ( # ` x ) = K } ) ) |
105 |
101 104
|
eqeq12d |
|- ( k = K -> ( ( ( # ` A ) _C k ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) <-> ( ( # ` A ) _C K ) = ( # ` { x e. ~P A | ( # ` x ) = K } ) ) ) |
106 |
105
|
rspccva |
|- ( ( A. k e. ZZ ( ( # ` A ) _C k ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) /\ K e. ZZ ) -> ( ( # ` A ) _C K ) = ( # ` { x e. ~P A | ( # ` x ) = K } ) ) |
107 |
100 106
|
sylan |
|- ( ( A e. Fin /\ K e. ZZ ) -> ( ( # ` A ) _C K ) = ( # ` { x e. ~P A | ( # ` x ) = K } ) ) |