| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ramval.c |
|- C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) |
| 2 |
|
0nn0 |
|- 0 e. NN0 |
| 3 |
1
|
hashbcval |
|- ( ( A e. V /\ 0 e. NN0 ) -> ( A C 0 ) = { x e. ~P A | ( # ` x ) = 0 } ) |
| 4 |
2 3
|
mpan2 |
|- ( A e. V -> ( A C 0 ) = { x e. ~P A | ( # ` x ) = 0 } ) |
| 5 |
|
hasheq0 |
|- ( x e. _V -> ( ( # ` x ) = 0 <-> x = (/) ) ) |
| 6 |
5
|
elv |
|- ( ( # ` x ) = 0 <-> x = (/) ) |
| 7 |
6
|
anbi2i |
|- ( ( x e. ~P A /\ ( # ` x ) = 0 ) <-> ( x e. ~P A /\ x = (/) ) ) |
| 8 |
|
id |
|- ( x = (/) -> x = (/) ) |
| 9 |
|
0elpw |
|- (/) e. ~P A |
| 10 |
8 9
|
eqeltrdi |
|- ( x = (/) -> x e. ~P A ) |
| 11 |
10
|
pm4.71ri |
|- ( x = (/) <-> ( x e. ~P A /\ x = (/) ) ) |
| 12 |
7 11
|
bitr4i |
|- ( ( x e. ~P A /\ ( # ` x ) = 0 ) <-> x = (/) ) |
| 13 |
12
|
abbii |
|- { x | ( x e. ~P A /\ ( # ` x ) = 0 ) } = { x | x = (/) } |
| 14 |
|
df-rab |
|- { x e. ~P A | ( # ` x ) = 0 } = { x | ( x e. ~P A /\ ( # ` x ) = 0 ) } |
| 15 |
|
df-sn |
|- { (/) } = { x | x = (/) } |
| 16 |
13 14 15
|
3eqtr4i |
|- { x e. ~P A | ( # ` x ) = 0 } = { (/) } |
| 17 |
4 16
|
eqtrdi |
|- ( A e. V -> ( A C 0 ) = { (/) } ) |