Step |
Hyp |
Ref |
Expression |
1 |
|
ramval.c |
|- C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) |
2 |
1
|
hashbcval |
|- ( ( A e. Fin /\ N e. NN0 ) -> ( A C N ) = { x e. ~P A | ( # ` x ) = N } ) |
3 |
2
|
fveq2d |
|- ( ( A e. Fin /\ N e. NN0 ) -> ( # ` ( A C N ) ) = ( # ` { x e. ~P A | ( # ` x ) = N } ) ) |
4 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
5 |
|
hashbc |
|- ( ( A e. Fin /\ N e. ZZ ) -> ( ( # ` A ) _C N ) = ( # ` { x e. ~P A | ( # ` x ) = N } ) ) |
6 |
4 5
|
sylan2 |
|- ( ( A e. Fin /\ N e. NN0 ) -> ( ( # ` A ) _C N ) = ( # ` { x e. ~P A | ( # ` x ) = N } ) ) |
7 |
3 6
|
eqtr4d |
|- ( ( A e. Fin /\ N e. NN0 ) -> ( # ` ( A C N ) ) = ( ( # ` A ) _C N ) ) |