Metamath Proof Explorer


Theorem hashbccl

Description: The binomial set is a finite set. (Contributed by Mario Carneiro, 20-Apr-2015)

Ref Expression
Hypothesis ramval.c
|- C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } )
Assertion hashbccl
|- ( ( A e. Fin /\ N e. NN0 ) -> ( A C N ) e. Fin )

Proof

Step Hyp Ref Expression
1 ramval.c
 |-  C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } )
2 1 hashbcval
 |-  ( ( A e. Fin /\ N e. NN0 ) -> ( A C N ) = { x e. ~P A | ( # ` x ) = N } )
3 simpl
 |-  ( ( A e. Fin /\ N e. NN0 ) -> A e. Fin )
4 pwfi
 |-  ( A e. Fin <-> ~P A e. Fin )
5 3 4 sylib
 |-  ( ( A e. Fin /\ N e. NN0 ) -> ~P A e. Fin )
6 ssrab2
 |-  { x e. ~P A | ( # ` x ) = N } C_ ~P A
7 ssfi
 |-  ( ( ~P A e. Fin /\ { x e. ~P A | ( # ` x ) = N } C_ ~P A ) -> { x e. ~P A | ( # ` x ) = N } e. Fin )
8 5 6 7 sylancl
 |-  ( ( A e. Fin /\ N e. NN0 ) -> { x e. ~P A | ( # ` x ) = N } e. Fin )
9 2 8 eqeltrd
 |-  ( ( A e. Fin /\ N e. NN0 ) -> ( A C N ) e. Fin )