Step |
Hyp |
Ref |
Expression |
1 |
|
ramval.c |
|- C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) |
2 |
|
simp2 |
|- ( ( A e. V /\ B C_ A /\ N e. NN0 ) -> B C_ A ) |
3 |
2
|
sspwd |
|- ( ( A e. V /\ B C_ A /\ N e. NN0 ) -> ~P B C_ ~P A ) |
4 |
|
rabss2 |
|- ( ~P B C_ ~P A -> { x e. ~P B | ( # ` x ) = N } C_ { x e. ~P A | ( # ` x ) = N } ) |
5 |
3 4
|
syl |
|- ( ( A e. V /\ B C_ A /\ N e. NN0 ) -> { x e. ~P B | ( # ` x ) = N } C_ { x e. ~P A | ( # ` x ) = N } ) |
6 |
|
simp1 |
|- ( ( A e. V /\ B C_ A /\ N e. NN0 ) -> A e. V ) |
7 |
6 2
|
ssexd |
|- ( ( A e. V /\ B C_ A /\ N e. NN0 ) -> B e. _V ) |
8 |
|
simp3 |
|- ( ( A e. V /\ B C_ A /\ N e. NN0 ) -> N e. NN0 ) |
9 |
1
|
hashbcval |
|- ( ( B e. _V /\ N e. NN0 ) -> ( B C N ) = { x e. ~P B | ( # ` x ) = N } ) |
10 |
7 8 9
|
syl2anc |
|- ( ( A e. V /\ B C_ A /\ N e. NN0 ) -> ( B C N ) = { x e. ~P B | ( # ` x ) = N } ) |
11 |
1
|
hashbcval |
|- ( ( A e. V /\ N e. NN0 ) -> ( A C N ) = { x e. ~P A | ( # ` x ) = N } ) |
12 |
11
|
3adant2 |
|- ( ( A e. V /\ B C_ A /\ N e. NN0 ) -> ( A C N ) = { x e. ~P A | ( # ` x ) = N } ) |
13 |
5 10 12
|
3sstr4d |
|- ( ( A e. V /\ B C_ A /\ N e. NN0 ) -> ( B C N ) C_ ( A C N ) ) |