Step |
Hyp |
Ref |
Expression |
1 |
|
ramval.c |
|- C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) |
2 |
|
elex |
|- ( A e. V -> A e. _V ) |
3 |
|
pwexg |
|- ( A e. _V -> ~P A e. _V ) |
4 |
3
|
adantr |
|- ( ( A e. _V /\ N e. NN0 ) -> ~P A e. _V ) |
5 |
|
rabexg |
|- ( ~P A e. _V -> { x e. ~P A | ( # ` x ) = N } e. _V ) |
6 |
4 5
|
syl |
|- ( ( A e. _V /\ N e. NN0 ) -> { x e. ~P A | ( # ` x ) = N } e. _V ) |
7 |
|
fveqeq2 |
|- ( b = x -> ( ( # ` b ) = i <-> ( # ` x ) = i ) ) |
8 |
7
|
cbvrabv |
|- { b e. ~P a | ( # ` b ) = i } = { x e. ~P a | ( # ` x ) = i } |
9 |
|
simpl |
|- ( ( a = A /\ i = N ) -> a = A ) |
10 |
9
|
pweqd |
|- ( ( a = A /\ i = N ) -> ~P a = ~P A ) |
11 |
|
simpr |
|- ( ( a = A /\ i = N ) -> i = N ) |
12 |
11
|
eqeq2d |
|- ( ( a = A /\ i = N ) -> ( ( # ` x ) = i <-> ( # ` x ) = N ) ) |
13 |
10 12
|
rabeqbidv |
|- ( ( a = A /\ i = N ) -> { x e. ~P a | ( # ` x ) = i } = { x e. ~P A | ( # ` x ) = N } ) |
14 |
8 13
|
eqtrid |
|- ( ( a = A /\ i = N ) -> { b e. ~P a | ( # ` b ) = i } = { x e. ~P A | ( # ` x ) = N } ) |
15 |
14 1
|
ovmpoga |
|- ( ( A e. _V /\ N e. NN0 /\ { x e. ~P A | ( # ` x ) = N } e. _V ) -> ( A C N ) = { x e. ~P A | ( # ` x ) = N } ) |
16 |
6 15
|
mpd3an3 |
|- ( ( A e. _V /\ N e. NN0 ) -> ( A C N ) = { x e. ~P A | ( # ` x ) = N } ) |
17 |
2 16
|
sylan |
|- ( ( A e. V /\ N e. NN0 ) -> ( A C N ) = { x e. ~P A | ( # ` x ) = N } ) |