Step |
Hyp |
Ref |
Expression |
1 |
|
cardidm |
|- ( card ` ( card ` A ) ) = ( card ` A ) |
2 |
1
|
fveq2i |
|- ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` ( card ` A ) ) ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) |
3 |
|
ficardom |
|- ( A e. Fin -> ( card ` A ) e. _om ) |
4 |
|
ssid |
|- ( card ` A ) C_ ( card ` A ) |
5 |
|
ssnnfi |
|- ( ( ( card ` A ) e. _om /\ ( card ` A ) C_ ( card ` A ) ) -> ( card ` A ) e. Fin ) |
6 |
3 4 5
|
sylancl |
|- ( A e. Fin -> ( card ` A ) e. Fin ) |
7 |
|
eqid |
|- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
8 |
7
|
hashgval |
|- ( ( card ` A ) e. Fin -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` ( card ` A ) ) ) = ( # ` ( card ` A ) ) ) |
9 |
6 8
|
syl |
|- ( A e. Fin -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` ( card ` A ) ) ) = ( # ` ( card ` A ) ) ) |
10 |
7
|
hashgval |
|- ( A e. Fin -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) = ( # ` A ) ) |
11 |
2 9 10
|
3eqtr3a |
|- ( A e. Fin -> ( # ` ( card ` A ) ) = ( # ` A ) ) |