Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
2 |
1
|
hashgval |
|- ( A e. Fin -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) = ( # ` A ) ) |
3 |
|
ficardom |
|- ( A e. Fin -> ( card ` A ) e. _om ) |
4 |
1
|
hashgf1o |
|- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) : _om -1-1-onto-> NN0 |
5 |
|
f1of |
|- ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) : _om -1-1-onto-> NN0 -> ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) : _om --> NN0 ) |
6 |
4 5
|
ax-mp |
|- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) : _om --> NN0 |
7 |
6
|
ffvelrni |
|- ( ( card ` A ) e. _om -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) e. NN0 ) |
8 |
3 7
|
syl |
|- ( A e. Fin -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) e. NN0 ) |
9 |
2 8
|
eqeltrrd |
|- ( A e. Fin -> ( # ` A ) e. NN0 ) |