Description: The size of the difference of a finite set and another set is the first set's size minus that of the intersection of both. (Contributed by Steve Rodriguez, 24-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashdif | |- ( A e. Fin -> ( # ` ( A \ B ) ) = ( ( # ` A ) - ( # ` ( A i^i B ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | difin | |- ( A \ ( A i^i B ) ) = ( A \ B ) | |
| 2 | 1 | fveq2i | |- ( # ` ( A \ ( A i^i B ) ) ) = ( # ` ( A \ B ) ) | 
| 3 | inss1 | |- ( A i^i B ) C_ A | |
| 4 | hashssdif | |- ( ( A e. Fin /\ ( A i^i B ) C_ A ) -> ( # ` ( A \ ( A i^i B ) ) ) = ( ( # ` A ) - ( # ` ( A i^i B ) ) ) ) | |
| 5 | 3 4 | mpan2 | |- ( A e. Fin -> ( # ` ( A \ ( A i^i B ) ) ) = ( ( # ` A ) - ( # ` ( A i^i B ) ) ) ) | 
| 6 | 2 5 | eqtr3id | |- ( A e. Fin -> ( # ` ( A \ B ) ) = ( ( # ` A ) - ( # ` ( A i^i B ) ) ) ) |