Description: The size of the difference of a finite set and another set is the first set's size minus that of the intersection of both. (Contributed by Steve Rodriguez, 24-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | hashdif | |- ( A e. Fin -> ( # ` ( A \ B ) ) = ( ( # ` A ) - ( # ` ( A i^i B ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difin | |- ( A \ ( A i^i B ) ) = ( A \ B ) |
|
2 | 1 | fveq2i | |- ( # ` ( A \ ( A i^i B ) ) ) = ( # ` ( A \ B ) ) |
3 | inss1 | |- ( A i^i B ) C_ A |
|
4 | hashssdif | |- ( ( A e. Fin /\ ( A i^i B ) C_ A ) -> ( # ` ( A \ ( A i^i B ) ) ) = ( ( # ` A ) - ( # ` ( A i^i B ) ) ) ) |
|
5 | 3 4 | mpan2 | |- ( A e. Fin -> ( # ` ( A \ ( A i^i B ) ) ) = ( ( # ` A ) - ( # ` ( A i^i B ) ) ) ) |
6 | 2 5 | eqtr3id | |- ( A e. Fin -> ( # ` ( A \ B ) ) = ( ( # ` A ) - ( # ` ( A i^i B ) ) ) ) |