| Step | Hyp | Ref | Expression | 
						
							| 1 |  | difpr |  |-  ( A \ { B , C } ) = ( ( A \ { B } ) \ { C } ) | 
						
							| 2 | 1 | a1i |  |-  ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( A \ { B , C } ) = ( ( A \ { B } ) \ { C } ) ) | 
						
							| 3 | 2 | fveq2d |  |-  ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( # ` ( A \ { B , C } ) ) = ( # ` ( ( A \ { B } ) \ { C } ) ) ) | 
						
							| 4 |  | diffi |  |-  ( A e. Fin -> ( A \ { B } ) e. Fin ) | 
						
							| 5 |  | necom |  |-  ( B =/= C <-> C =/= B ) | 
						
							| 6 | 5 | biimpi |  |-  ( B =/= C -> C =/= B ) | 
						
							| 7 | 6 | anim2i |  |-  ( ( C e. A /\ B =/= C ) -> ( C e. A /\ C =/= B ) ) | 
						
							| 8 | 7 | 3adant1 |  |-  ( ( B e. A /\ C e. A /\ B =/= C ) -> ( C e. A /\ C =/= B ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( C e. A /\ C =/= B ) ) | 
						
							| 10 |  | eldifsn |  |-  ( C e. ( A \ { B } ) <-> ( C e. A /\ C =/= B ) ) | 
						
							| 11 | 9 10 | sylibr |  |-  ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> C e. ( A \ { B } ) ) | 
						
							| 12 |  | hashdifsn |  |-  ( ( ( A \ { B } ) e. Fin /\ C e. ( A \ { B } ) ) -> ( # ` ( ( A \ { B } ) \ { C } ) ) = ( ( # ` ( A \ { B } ) ) - 1 ) ) | 
						
							| 13 | 4 11 12 | syl2an2r |  |-  ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( # ` ( ( A \ { B } ) \ { C } ) ) = ( ( # ` ( A \ { B } ) ) - 1 ) ) | 
						
							| 14 |  | hashdifsn |  |-  ( ( A e. Fin /\ B e. A ) -> ( # ` ( A \ { B } ) ) = ( ( # ` A ) - 1 ) ) | 
						
							| 15 | 14 | 3ad2antr1 |  |-  ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( # ` ( A \ { B } ) ) = ( ( # ` A ) - 1 ) ) | 
						
							| 16 | 15 | oveq1d |  |-  ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( ( # ` ( A \ { B } ) ) - 1 ) = ( ( ( # ` A ) - 1 ) - 1 ) ) | 
						
							| 17 |  | hashcl |  |-  ( A e. Fin -> ( # ` A ) e. NN0 ) | 
						
							| 18 | 17 | nn0cnd |  |-  ( A e. Fin -> ( # ` A ) e. CC ) | 
						
							| 19 |  | sub1m1 |  |-  ( ( # ` A ) e. CC -> ( ( ( # ` A ) - 1 ) - 1 ) = ( ( # ` A ) - 2 ) ) | 
						
							| 20 | 18 19 | syl |  |-  ( A e. Fin -> ( ( ( # ` A ) - 1 ) - 1 ) = ( ( # ` A ) - 2 ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( ( ( # ` A ) - 1 ) - 1 ) = ( ( # ` A ) - 2 ) ) | 
						
							| 22 | 16 21 | eqtrd |  |-  ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( ( # ` ( A \ { B } ) ) - 1 ) = ( ( # ` A ) - 2 ) ) | 
						
							| 23 | 3 13 22 | 3eqtrd |  |-  ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( # ` ( A \ { B , C } ) ) = ( ( # ` A ) - 2 ) ) |