Step |
Hyp |
Ref |
Expression |
1 |
|
difpr |
|- ( A \ { B , C } ) = ( ( A \ { B } ) \ { C } ) |
2 |
1
|
a1i |
|- ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( A \ { B , C } ) = ( ( A \ { B } ) \ { C } ) ) |
3 |
2
|
fveq2d |
|- ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( # ` ( A \ { B , C } ) ) = ( # ` ( ( A \ { B } ) \ { C } ) ) ) |
4 |
|
diffi |
|- ( A e. Fin -> ( A \ { B } ) e. Fin ) |
5 |
|
necom |
|- ( B =/= C <-> C =/= B ) |
6 |
5
|
biimpi |
|- ( B =/= C -> C =/= B ) |
7 |
6
|
anim2i |
|- ( ( C e. A /\ B =/= C ) -> ( C e. A /\ C =/= B ) ) |
8 |
7
|
3adant1 |
|- ( ( B e. A /\ C e. A /\ B =/= C ) -> ( C e. A /\ C =/= B ) ) |
9 |
8
|
adantl |
|- ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( C e. A /\ C =/= B ) ) |
10 |
|
eldifsn |
|- ( C e. ( A \ { B } ) <-> ( C e. A /\ C =/= B ) ) |
11 |
9 10
|
sylibr |
|- ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> C e. ( A \ { B } ) ) |
12 |
|
hashdifsn |
|- ( ( ( A \ { B } ) e. Fin /\ C e. ( A \ { B } ) ) -> ( # ` ( ( A \ { B } ) \ { C } ) ) = ( ( # ` ( A \ { B } ) ) - 1 ) ) |
13 |
4 11 12
|
syl2an2r |
|- ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( # ` ( ( A \ { B } ) \ { C } ) ) = ( ( # ` ( A \ { B } ) ) - 1 ) ) |
14 |
|
hashdifsn |
|- ( ( A e. Fin /\ B e. A ) -> ( # ` ( A \ { B } ) ) = ( ( # ` A ) - 1 ) ) |
15 |
14
|
3ad2antr1 |
|- ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( # ` ( A \ { B } ) ) = ( ( # ` A ) - 1 ) ) |
16 |
15
|
oveq1d |
|- ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( ( # ` ( A \ { B } ) ) - 1 ) = ( ( ( # ` A ) - 1 ) - 1 ) ) |
17 |
|
hashcl |
|- ( A e. Fin -> ( # ` A ) e. NN0 ) |
18 |
17
|
nn0cnd |
|- ( A e. Fin -> ( # ` A ) e. CC ) |
19 |
|
sub1m1 |
|- ( ( # ` A ) e. CC -> ( ( ( # ` A ) - 1 ) - 1 ) = ( ( # ` A ) - 2 ) ) |
20 |
18 19
|
syl |
|- ( A e. Fin -> ( ( ( # ` A ) - 1 ) - 1 ) = ( ( # ` A ) - 2 ) ) |
21 |
20
|
adantr |
|- ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( ( ( # ` A ) - 1 ) - 1 ) = ( ( # ` A ) - 2 ) ) |
22 |
16 21
|
eqtrd |
|- ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( ( # ` ( A \ { B } ) ) - 1 ) = ( ( # ` A ) - 2 ) ) |
23 |
3 13 22
|
3eqtrd |
|- ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( # ` ( A \ { B , C } ) ) = ( ( # ` A ) - 2 ) ) |