Step |
Hyp |
Ref |
Expression |
1 |
|
snssi |
|- ( B e. A -> { B } C_ A ) |
2 |
|
hashssdif |
|- ( ( A e. Fin /\ { B } C_ A ) -> ( # ` ( A \ { B } ) ) = ( ( # ` A ) - ( # ` { B } ) ) ) |
3 |
1 2
|
sylan2 |
|- ( ( A e. Fin /\ B e. A ) -> ( # ` ( A \ { B } ) ) = ( ( # ` A ) - ( # ` { B } ) ) ) |
4 |
|
hashsng |
|- ( B e. A -> ( # ` { B } ) = 1 ) |
5 |
4
|
adantl |
|- ( ( A e. Fin /\ B e. A ) -> ( # ` { B } ) = 1 ) |
6 |
5
|
oveq2d |
|- ( ( A e. Fin /\ B e. A ) -> ( ( # ` A ) - ( # ` { B } ) ) = ( ( # ` A ) - 1 ) ) |
7 |
3 6
|
eqtrd |
|- ( ( A e. Fin /\ B e. A ) -> ( # ` ( A \ { B } ) ) = ( ( # ` A ) - 1 ) ) |