| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashdmpropge2.a |
|- ( ph -> A e. V ) |
| 2 |
|
hashdmpropge2.b |
|- ( ph -> B e. W ) |
| 3 |
|
hashdmpropge2.c |
|- ( ph -> C e. X ) |
| 4 |
|
hashdmpropge2.d |
|- ( ph -> D e. Y ) |
| 5 |
|
hashdmpropge2.f |
|- ( ph -> F e. Z ) |
| 6 |
|
hashdmpropge2.n |
|- ( ph -> A =/= B ) |
| 7 |
|
hashdmpropge2.s |
|- ( ph -> { <. A , C >. , <. B , D >. } C_ F ) |
| 8 |
5
|
dmexd |
|- ( ph -> dom F e. _V ) |
| 9 |
|
dmpropg |
|- ( ( C e. X /\ D e. Y ) -> dom { <. A , C >. , <. B , D >. } = { A , B } ) |
| 10 |
3 4 9
|
syl2anc |
|- ( ph -> dom { <. A , C >. , <. B , D >. } = { A , B } ) |
| 11 |
|
dmss |
|- ( { <. A , C >. , <. B , D >. } C_ F -> dom { <. A , C >. , <. B , D >. } C_ dom F ) |
| 12 |
7 11
|
syl |
|- ( ph -> dom { <. A , C >. , <. B , D >. } C_ dom F ) |
| 13 |
10 12
|
eqsstrrd |
|- ( ph -> { A , B } C_ dom F ) |
| 14 |
|
prssg |
|- ( ( A e. V /\ B e. W ) -> ( ( A e. dom F /\ B e. dom F ) <-> { A , B } C_ dom F ) ) |
| 15 |
1 2 14
|
syl2anc |
|- ( ph -> ( ( A e. dom F /\ B e. dom F ) <-> { A , B } C_ dom F ) ) |
| 16 |
|
neeq1 |
|- ( a = A -> ( a =/= b <-> A =/= b ) ) |
| 17 |
|
neeq2 |
|- ( b = B -> ( A =/= b <-> A =/= B ) ) |
| 18 |
16 17
|
rspc2ev |
|- ( ( A e. dom F /\ B e. dom F /\ A =/= B ) -> E. a e. dom F E. b e. dom F a =/= b ) |
| 19 |
18
|
3expa |
|- ( ( ( A e. dom F /\ B e. dom F ) /\ A =/= B ) -> E. a e. dom F E. b e. dom F a =/= b ) |
| 20 |
19
|
expcom |
|- ( A =/= B -> ( ( A e. dom F /\ B e. dom F ) -> E. a e. dom F E. b e. dom F a =/= b ) ) |
| 21 |
6 20
|
syl |
|- ( ph -> ( ( A e. dom F /\ B e. dom F ) -> E. a e. dom F E. b e. dom F a =/= b ) ) |
| 22 |
15 21
|
sylbird |
|- ( ph -> ( { A , B } C_ dom F -> E. a e. dom F E. b e. dom F a =/= b ) ) |
| 23 |
13 22
|
mpd |
|- ( ph -> E. a e. dom F E. b e. dom F a =/= b ) |
| 24 |
|
hashge2el2difr |
|- ( ( dom F e. _V /\ E. a e. dom F E. b e. dom F a =/= b ) -> 2 <_ ( # ` dom F ) ) |
| 25 |
8 23 24
|
syl2anc |
|- ( ph -> 2 <_ ( # ` dom F ) ) |