| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( A ~<_ B /\ A e. Fin ) -> A ~<_ B ) |
| 2 |
|
simpr |
|- ( ( A ~<_ B /\ A e. Fin ) -> A e. Fin ) |
| 3 |
|
reldom |
|- Rel ~<_ |
| 4 |
3
|
brrelex2i |
|- ( A ~<_ B -> B e. _V ) |
| 5 |
4
|
adantr |
|- ( ( A ~<_ B /\ A e. Fin ) -> B e. _V ) |
| 6 |
|
hashdom |
|- ( ( A e. Fin /\ B e. _V ) -> ( ( # ` A ) <_ ( # ` B ) <-> A ~<_ B ) ) |
| 7 |
2 5 6
|
syl2anc |
|- ( ( A ~<_ B /\ A e. Fin ) -> ( ( # ` A ) <_ ( # ` B ) <-> A ~<_ B ) ) |
| 8 |
1 7
|
mpbird |
|- ( ( A ~<_ B /\ A e. Fin ) -> ( # ` A ) <_ ( # ` B ) ) |
| 9 |
|
pnfxr |
|- +oo e. RR* |
| 10 |
|
pnfge |
|- ( +oo e. RR* -> +oo <_ +oo ) |
| 11 |
9 10
|
mp1i |
|- ( ( A ~<_ B /\ -. A e. Fin ) -> +oo <_ +oo ) |
| 12 |
3
|
brrelex1i |
|- ( A ~<_ B -> A e. _V ) |
| 13 |
|
hashinf |
|- ( ( A e. _V /\ -. A e. Fin ) -> ( # ` A ) = +oo ) |
| 14 |
12 13
|
sylan |
|- ( ( A ~<_ B /\ -. A e. Fin ) -> ( # ` A ) = +oo ) |
| 15 |
4
|
adantr |
|- ( ( A ~<_ B /\ -. A e. Fin ) -> B e. _V ) |
| 16 |
|
domfi |
|- ( ( B e. Fin /\ A ~<_ B ) -> A e. Fin ) |
| 17 |
16
|
stoic1b |
|- ( ( A ~<_ B /\ -. A e. Fin ) -> -. B e. Fin ) |
| 18 |
|
hashinf |
|- ( ( B e. _V /\ -. B e. Fin ) -> ( # ` B ) = +oo ) |
| 19 |
15 17 18
|
syl2anc |
|- ( ( A ~<_ B /\ -. A e. Fin ) -> ( # ` B ) = +oo ) |
| 20 |
11 14 19
|
3brtr4d |
|- ( ( A ~<_ B /\ -. A e. Fin ) -> ( # ` A ) <_ ( # ` B ) ) |
| 21 |
8 20
|
pm2.61dan |
|- ( A ~<_ B -> ( # ` A ) <_ ( # ` B ) ) |